changeset 4:fb4959ed5b2b draft

Fixes to paths in git for deps
author fubar
date Sat, 31 Oct 2015 02:26:24 -0400
parents 01a5391488cd
children 2b7e28499fd8
files .shed.yml readme.rst rgToolFactory.py rg_nri.xml rglasso_cox.xml test-data/cox_coxlassotest_glmnet_cvdeviance.pdf test-data/cox_coxlassotest_glmnetdev.pdf test-data/cox_test.xls test-data/coxlassotest.html test-data/coxlassotest_modelres.xls test-data/genTest.R test-data/nri_test1.xls test-data/nri_test1_out.html test-data/nri_test1_out.xls tool_dependencies.xml
diffstat 14 files changed, 3126 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/.shed.yml	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,9 @@
+categories:
+- Statistics
+description: glmnet and lars for galaxy
+long_description: |
+  Allows hybrid lasso-ridge regression using glmnet
+name: rglasso_1_9_8
+owner: fubar
+remote_repository_url: https://github.com/galaxyproject/tools-iuc/tree/master/tools/rglasso
+type: unrestricted
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/readme.rst	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,39 @@
+glmnet wrappers
+===============
+
+This is a self installing Galaxy tool exposing the glmnet_ R package which has excellent documentation at
+glmnet_ Minimal details are provided in this wrapper - please RTM to get the best out of it.
+
+The tool exposes the entire range of penalised maximum likelihood
+GLM models ranging from pure lasso (set alpha to 1) to pure ridge-regression (set alpha to 0). 
+
+These models can be k-fold internally cross validated to help select an "optimal" predictive or classification
+algorithm. Predictive coefficients for each included independent variable are output for each model. 
+
+Predictors can be forced into models to adjust for known confounders or explanatory factors.
+
+The glmnet_ implementation of the coordinate descent algorithm is fast and efficient even on relatively large problems
+with tens of thousands of predictors and thousands of samples - such as normalised microarray intensities and anthropometry
+on a very large sample of obese patients. 
+
+The user supplies a tabular file with rows as samples and columns containing observations, then chooses 
+as many predictors as required. A separate model will be output for each of potentially multiple dependent
+variables. Models are reported as the coefficients for terms in an 'optimal' model.
+These optimal predictors are selected by repeatedly setting
+aside a random subsample, building a model in the remainder and estimating AUC or deviance 
+using  k (default 10) fold internal cross validation. For each of these steps, a random 1/k 
+of the samples are set aside and used to estiamte performance of an optimal model estimated 
+from the remaining samples. Plots are provided showing the range of these (eg 10) internal validation 
+estimates and mean model AUC (binomial) or residual deviance plots at each penalty increment step.
+
+A full range of link functions are available including Gaussian, Poisson, Binomial and
+Cox proportional hazard time to failure for censored data in this wrapper.
+
+Note that multinomial and multiresponse gaussian models are NOT yet implemented since I have not yet
+had use for them - send code!
+
+.. _glmnet: http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
+
+Wrapper author: Ross Lazarus
+19 october 2014
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rgToolFactory.py	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,649 @@
+# rgToolFactory.py
+# see https://bitbucket.org/fubar/galaxytoolfactory/wiki/Home
+# 
+# copyright ross lazarus (ross stop lazarus at gmail stop com) May 2012
+# 
+# all rights reserved
+# Licensed under the LGPL
+# suggestions for improvement and bug fixes welcome at https://bitbucket.org/fubar/galaxytoolfactory/wiki/Home
+#
+# july 2014
+# added buffered read of sterror after run
+#
+# august 2013
+# found a problem with GS if $TMP or $TEMP missing - now inject /tmp and warn
+#
+# july 2013
+# added ability to combine images and individual log files into html output
+# just make sure there's a log file foo.log and it will be output
+# together with all images named like "foo_*.pdf
+# otherwise old format for html
+#
+# January 2013
+# problem pointed out by Carlos Borroto
+# added escaping for <>$ - thought I did that ages ago...
+#
+# August 11 2012 
+# changed to use shell=False and cl as a sequence
+
+# This is a Galaxy tool factory for simple scripts in python, R or whatever ails ye.
+# It also serves as the wrapper for the new tool.
+# 
+# you paste and run your script
+# Only works for simple scripts that read one input from the history.
+# Optionally can write one new history dataset,
+# and optionally collect any number of outputs into links on an autogenerated HTML page.
+
+# DO NOT install on a public or important site - please.
+
+# installed generated tools are fine if the script is safe.
+# They just run normally and their user cannot do anything unusually insecure
+# but please, practice safe toolshed.
+# Read the fucking code before you install any tool 
+# especially this one
+
+# After you get the script working on some test data, you can
+# optionally generate a toolshed compatible gzip file
+# containing your script safely wrapped as an ordinary Galaxy script in your local toolshed for
+# safe and largely automated installation in a production Galaxy.
+
+# If you opt for an HTML output, you get all the script outputs arranged
+# as a single Html history item - all output files are linked, thumbnails for all the pdfs.
+# Ugly but really inexpensive.
+# 
+# Patches appreciated please. 
+#
+#
+# long route to June 2012 product
+# Behold the awesome power of Galaxy and the toolshed with the tool factory to bind them
+# derived from an integrated script model  
+# called rgBaseScriptWrapper.py
+# Note to the unwary:
+#   This tool allows arbitrary scripting on your Galaxy as the Galaxy user
+#   There is nothing stopping a malicious user doing whatever they choose
+#   Extremely dangerous!!
+#   Totally insecure. So, trusted users only
+#
+# preferred model is a developer using their throw away workstation instance - ie a private site.
+# no real risk. The universe_wsgi.ini admin_users string is checked - only admin users are permitted to run this tool.
+#
+
+import sys 
+import shutil 
+import subprocess 
+import os 
+import time 
+import tempfile 
+import optparse
+import tarfile
+import re
+import shutil
+import math
+
+progname = os.path.split(sys.argv[0])[1] 
+myversion = 'V000.2 June 2012' 
+verbose = False 
+debug = False
+toolFactoryURL = 'https://bitbucket.org/fubar/galaxytoolfactory'
+buffsize = 1048576
+
+
+def timenow():
+    """return current time as a string
+    """
+    return time.strftime('%d/%m/%Y %H:%M:%S', time.localtime(time.time()))
+
+html_escape_table = {
+     "&": "&amp;",
+     ">": "&gt;",
+     "<": "&lt;",
+     "$": "\$"
+     }
+
+def html_escape(text):
+     """Produce entities within text."""
+     return "".join(html_escape_table.get(c,c) for c in text)
+
+def cmd_exists(cmd):
+     return subprocess.call("type " + cmd, shell=True, 
+           stdout=subprocess.PIPE, stderr=subprocess.PIPE) == 0
+
+
+class ScriptRunner:
+    """class is a wrapper for an arbitrary script
+    """
+
+    def __init__(self,opts=None):
+        """
+        cleanup inputs, setup some outputs
+        
+        """
+        self.useGM = cmd_exists('gm')
+        self.useIM = cmd_exists('convert')
+        self.useGS = cmd_exists('gs')
+        self.temp_warned = False # we want only one warning if $TMP not set
+        if opts.output_dir: # simplify for the tool tarball
+            os.chdir(opts.output_dir)
+        self.thumbformat = 'png'
+        self.opts = opts
+        self.toolname = re.sub('[^a-zA-Z0-9_]+', '', opts.tool_name) # a sanitizer now does this but..
+        self.toolid = self.toolname
+        self.myname = sys.argv[0] # get our name because we write ourselves out as a tool later
+        self.pyfile = self.myname # crude but efficient - the cruft won't hurt much
+        self.xmlfile = '%s.xml' % self.toolname
+        s = open(self.opts.script_path,'r').readlines()
+        s = [x.rstrip() for x in s] # remove pesky dos line endings if needed
+        self.script = '\n'.join(s)
+        fhandle,self.sfile = tempfile.mkstemp(prefix=self.toolname,suffix=".%s" % (opts.interpreter))
+        tscript = open(self.sfile,'w') # use self.sfile as script source for Popen
+        tscript.write(self.script)
+        tscript.close()
+        self.indentedScript = '\n'.join([' %s' % x for x in s]) # for restructured text in help
+        self.escapedScript = '\n'.join([html_escape(x) for x in s])
+        self.elog = os.path.join(self.opts.output_dir,"%s_error.log" % self.toolname)
+        self.tlog = os.path.join(self.opts.output_dir,"%s_runner.log" % self.toolname)
+        if opts.output_dir: # may not want these complexities 
+            art = '%s.%s' % (self.toolname,opts.interpreter)
+            artpath = os.path.join(self.opts.output_dir,art) # need full path
+            artifact = open(artpath,'w') # use self.sfile as script source for Popen
+            artifact.write(self.script)
+            artifact.close()
+        self.html = []
+        self.cl = (opts.interpreter,self.sfile)
+        self.outFormats = 'tabular' # TODO make this an option at tool generation time
+        self.inputFormats = 'tabular' # TODO make this an option at tool generation time
+        self.test1Input = '%s_test1_input.xls' % self.toolname
+        self.test1Output = '%s_test1_output.xls' % self.toolname
+        self.test1HTML = '%s_test1_output.html' % self.toolname
+
+    def makeXML(self):
+        """
+        Create a Galaxy xml tool wrapper for the new script as a string to write out
+        fixme - use templating or something less fugly than this example of what we produce
+
+        <tool id="reverse" name="reverse" version="0.01">
+            <description>a tabular file</description>
+            <command interpreter="python">
+            reverse.py --script_path "$runMe" --interpreter "python" 
+            --tool_name "reverse" --input_tab "$input1" --output_tab "$tab_file" 
+            </command>
+            <inputs>
+            <param name="input1"  type="data" format="tabular" label="Select a suitable input file from your history"/><param name="job_name" type="text" label="Supply a name for the outputs to remind you what they contain" value="reverse"/>
+
+            </inputs>
+            <outputs>
+            <data format="tabular" name="tab_file" label="${job_name}"/>
+
+            </outputs>
+            <help>
+            
+**What it Does**
+
+Reverse the columns in a tabular file
+
+            </help>
+            <configfiles>
+            <configfile name="runMe">
+            
+# reverse order of columns in a tabular file
+import sys
+inp = sys.argv[1]
+outp = sys.argv[2]
+i = open(inp,'r')
+o = open(outp,'w')
+for row in i:
+     rs = row.rstrip().split('\t')
+     rs.reverse()
+     o.write('\t'.join(rs))
+     o.write('\n')
+i.close()
+o.close()
+ 
+
+            </configfile>
+            </configfiles>
+            </tool>
+        
+        """ 
+        newXML="""<tool id="%(toolid)s" name="%(toolname)s" version="%(tool_version)s">
+            %(tooldesc)s
+            %(command)s
+            <inputs>
+            %(inputs)s
+            </inputs>
+            <outputs>
+            %(outputs)s
+            </outputs>
+            <configfiles>
+            <configfile name="runMe">
+            %(script)s
+            </configfile>
+            </configfiles>
+            %(tooltests)s
+            <help>
+            %(help)s
+            </help>
+            </tool>""" # needs a dict with toolname, toolid, interpreter, scriptname, command, inputs as a multi line string ready to write, outputs ditto, help ditto
+               
+        newCommand="""<command interpreter="python">
+            %(toolname)s.py --script_path "$runMe" --interpreter "%(interpreter)s" 
+            --tool_name "%(toolname)s" %(command_inputs)s %(command_outputs)s 
+            </command>""" # may NOT be an input or htmlout
+        tooltestsTabOnly = """<tests><test>
+        <param name="input1" value="%(test1Input)s" ftype="tabular"/>
+        <param name="job_name" value="test1"/>
+        <param name="runMe" value="$runMe"/>
+        <output name="tab_file" file="%(test1Output)s" ftype="tabular"/>
+        </test></tests>"""
+        tooltestsHTMLOnly = """<tests><test>
+        <param name="input1" value="%(test1Input)s" ftype="tabular"/>
+        <param name="job_name" value="test1"/>
+        <param name="runMe" value="$runMe"/>
+        <output name="html_file" file="%(test1HTML)s" ftype="html" lines_diff="5"/>
+        </test></tests>"""
+        tooltestsBoth = """<tests><test>
+        <param name="input1" value="%(test1Input)s" ftype="tabular"/>
+        <param name="job_name" value="test1"/>
+        <param name="runMe" value="$runMe"/>
+        <output name="tab_file" file="%(test1Output)s" ftype="tabular" />
+        <output name="html_file" file="%(test1HTML)s" ftype="html" lines_diff="10"/>
+        </test></tests>"""
+        xdict = {}
+        xdict['tool_version'] = self.opts.tool_version
+        xdict['test1Input'] = self.test1Input
+        xdict['test1HTML'] = self.test1HTML
+        xdict['test1Output'] = self.test1Output   
+        if self.opts.make_HTML and self.opts.output_tab <> 'None':
+            xdict['tooltests'] = tooltestsBoth % xdict
+        elif self.opts.make_HTML:
+            xdict['tooltests'] = tooltestsHTMLOnly % xdict
+        else:
+            xdict['tooltests'] = tooltestsTabOnly % xdict
+        xdict['script'] = self.escapedScript 
+        # configfile is least painful way to embed script to avoid external dependencies
+        # but requires escaping of <, > and $ to avoid Mako parsing
+        if self.opts.help_text:
+            xdict['help'] = open(self.opts.help_text,'r').read()
+        else:
+            xdict['help'] = 'Please ask the tool author for help as none was supplied at tool generation'
+        coda = ['**Script**','Pressing execute will run the following code over your input file and generate some outputs in your history::']
+        coda.append(self.indentedScript)
+        coda.append('**Attribution** This Galaxy tool was created by %s at %s\nusing the Galaxy Tool Factory.' % (self.opts.user_email,timenow()))
+        coda.append('See %s for details of that project' % (toolFactoryURL))
+        coda.append('Please cite: Creating re-usable tools from scripts: The Galaxy Tool Factory. Ross Lazarus; Antony Kaspi; Mark Ziemann; The Galaxy Team. ')
+        coda.append('Bioinformatics 2012; doi: 10.1093/bioinformatics/bts573')
+        xdict['help'] = '%s\n%s' % (xdict['help'],'\n'.join(coda))
+        if self.opts.tool_desc:
+            xdict['tooldesc'] = '<description>%s</description>' % self.opts.tool_desc
+        else:
+            xdict['tooldesc'] = ''
+        xdict['command_outputs'] = '' 
+        xdict['outputs'] = '' 
+        if self.opts.input_tab <> 'None':
+            xdict['command_inputs'] = '--input_tab "$input1" ' # the space may matter a lot if we append something
+            xdict['inputs'] = '<param name="input1"  type="data" format="%s" label="Select a suitable input file from your history"/> \n' % self.inputFormats
+        else:
+            xdict['command_inputs'] = '' # assume no input - eg a random data generator       
+            xdict['inputs'] = ''
+        xdict['inputs'] += '<param name="job_name" type="text" label="Supply a name for the outputs to remind you what they contain" value="%s"/> \n' % self.toolname
+        xdict['toolname'] = self.toolname
+        xdict['toolid'] = self.toolid
+        xdict['interpreter'] = self.opts.interpreter
+        xdict['scriptname'] = self.sfile
+        if self.opts.make_HTML:
+            xdict['command_outputs'] += ' --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes" '
+            xdict['outputs'] +=  ' <data format="html" name="html_file" label="${job_name}.html"/>\n'
+        if self.opts.output_tab <> 'None':
+            xdict['command_outputs'] += ' --output_tab "$tab_file"'
+            xdict['outputs'] += ' <data format="%s" name="tab_file" label="${job_name}"/>\n' % self.outFormats
+        xdict['command'] = newCommand % xdict
+        xmls = newXML % xdict
+        xf = open(self.xmlfile,'w')
+        xf.write(xmls)
+        xf.write('\n')
+        xf.close()
+        # ready for the tarball
+
+
+    def makeTooltar(self):
+        """
+        a tool is a gz tarball with eg
+        /toolname/tool.xml /toolname/tool.py /toolname/test-data/test1_in.foo ...
+        """
+        retval = self.run()
+        if retval:
+            print >> sys.stderr,'## Run failed. Cannot build yet. Please fix and retry'
+            sys.exit(1)
+        self.makeXML()
+        tdir = self.toolname
+        os.mkdir(tdir)
+        if self.opts.input_tab <> 'None': # no reproducible test otherwise? TODO: maybe..
+            testdir = os.path.join(tdir,'test-data')
+            os.mkdir(testdir) # make tests directory
+            shutil.copyfile(self.opts.input_tab,os.path.join(testdir,self.test1Input))
+            if self.opts.output_tab <> 'None':
+                shutil.copyfile(self.opts.output_tab,os.path.join(testdir,self.test1Output))
+            if self.opts.make_HTML:
+                shutil.copyfile(self.opts.output_html,os.path.join(testdir,self.test1HTML))
+            if self.opts.output_dir:
+                shutil.copyfile(self.tlog,os.path.join(testdir,'test1_out.log'))
+        op = '%s.py' % self.toolname # new name
+        outpiname = os.path.join(tdir,op) # path for the tool tarball
+        pyin = os.path.basename(self.pyfile) # our name - we rewrite ourselves (TM)
+        notes = ['# %s - a self annotated version of %s generated by running %s\n' % (op,pyin,pyin),]
+        notes.append('# to make a new Galaxy tool called %s\n' % self.toolname)
+        notes.append('# User %s at %s\n' % (self.opts.user_email,timenow()))
+        pi = open(self.pyfile,'r').readlines() # our code becomes new tool wrapper (!) - first Galaxy worm
+        notes += pi
+        outpi = open(outpiname,'w')
+        outpi.write(''.join(notes))
+        outpi.write('\n')
+        outpi.close()
+        stname = os.path.join(tdir,self.sfile)
+        if not os.path.exists(stname):
+            shutil.copyfile(self.sfile, stname)
+        xtname = os.path.join(tdir,self.xmlfile)
+        if not os.path.exists(xtname):
+            shutil.copyfile(self.xmlfile,xtname)
+        tarpath = "%s.gz" % self.toolname
+        tar = tarfile.open(tarpath, "w:gz")
+        tar.add(tdir,arcname=self.toolname)
+        tar.close()
+        shutil.copyfile(tarpath,self.opts.new_tool)
+        shutil.rmtree(tdir)
+        ## TODO: replace with optional direct upload to local toolshed?
+        return retval
+
+
+    def compressPDF(self,inpdf=None,thumbformat='png'):
+        """need absolute path to pdf
+           note that GS gets confoozled if no $TMP or $TEMP
+           so we set it
+        """
+        assert os.path.isfile(inpdf), "## Input %s supplied to %s compressPDF not found" % (inpdf,self.myName)
+        our_env = os.environ.copy()
+        if not (our_env.get('TMP',None) or our_env.get('TEMP',None)):
+            our_env['TMP'] = '/tmp'
+            if not self.temp_warned:
+               print >> sys.stdout,'## WARNING - no $TMP or $TEMP!!! Please fix - using /tmp temporarily'
+               self.temp_warned = True          
+        hlog = os.path.join(self.opts.output_dir,"compress_%s.txt" % os.path.basename(inpdf))
+        sto = open(hlog,'w')
+        outpdf = '%s_compressed' % inpdf
+        cl = ["gs", "-sDEVICE=pdfwrite", "-dNOPAUSE", "-dUseCIEColor", "-dBATCH","-dPDFSETTINGS=/printer", "-sOutputFile=%s" % outpdf,inpdf]
+        x = subprocess.Popen(cl,stdout=sto,stderr=sto,cwd=self.opts.output_dir,env=our_env)
+        retval1 = x.wait()
+        sto.close()
+        if retval1 == 0:
+            os.unlink(inpdf)
+            shutil.move(outpdf,inpdf)
+            os.unlink(hlog)
+        else:
+            x = open(hlog,'r').readlines()
+            print >> sys.stdout,x
+        hlog = os.path.join(self.opts.output_dir,"thumbnail_%s.txt" % os.path.basename(inpdf))
+        sto = open(hlog,'w')
+        outpng = '%s.%s' % (os.path.splitext(inpdf)[0],thumbformat)
+        if self.useGM:        
+            cl2 = ['gm', 'convert', inpdf, outpng]
+        else: # assume imagemagick
+            cl2 = ['convert', inpdf, outpng]
+        x = subprocess.Popen(cl2,stdout=sto,stderr=sto,cwd=self.opts.output_dir,env=our_env)
+        retval2 = x.wait()
+        sto.close()
+        if retval2 <> 0:
+             x = open(hlog,'r').readlines()
+             print >> sys.stdout,x
+        else:
+             os.unlink(hlog)
+        retval = retval1 or retval2
+        return retval
+
+
+    def getfSize(self,fpath,outpath):
+        """
+        format a nice file size string
+        """
+        size = ''
+        fp = os.path.join(outpath,fpath)
+        if os.path.isfile(fp):
+            size = '0 B'
+            n = float(os.path.getsize(fp))
+            if n > 2**20:
+                size = '%1.1f MB' % (n/2**20)
+            elif n > 2**10:
+                size = '%1.1f KB' % (n/2**10)
+            elif n > 0:
+                size = '%d B' % (int(n))
+        return size
+
+    def makeHtml(self):
+        """ Create an HTML file content to list all the artifacts found in the output_dir
+        """
+
+        galhtmlprefix = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
+        <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 
+        <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
+        <meta name="generator" content="Galaxy %s tool output - see http://g2.trac.bx.psu.edu/" /> 
+        <title></title> 
+        <link rel="stylesheet" href="/static/style/base.css" type="text/css" /> 
+        </head> 
+        <body> 
+        <div class="toolFormBody"> 
+        """ 
+        galhtmlattr = """<hr/><div class="infomessage">This tool (%s) was generated by the <a href="https://bitbucket.org/fubar/galaxytoolfactory/overview">Galaxy Tool Factory</a></div><br/>""" 
+        galhtmlpostfix = """</div></body></html>\n"""
+
+        flist = os.listdir(self.opts.output_dir)
+        flist = [x for x in flist if x <> 'Rplots.pdf']
+        flist.sort()
+        html = []
+        html.append(galhtmlprefix % progname)
+        html.append('<div class="infomessage">Galaxy Tool "%s" run at %s</div><br/>' % (self.toolname,timenow()))
+        fhtml = []
+        if len(flist) > 0:
+            logfiles = [x for x in flist if x.lower().endswith('.log')] # log file names determine sections
+            logfiles.sort()
+            logfiles = [x for x in logfiles if os.path.abspath(x) <> os.path.abspath(self.tlog)]
+            logfiles.append(os.path.abspath(self.tlog)) # make it the last one
+            pdflist = []
+            npdf = len([x for x in flist if os.path.splitext(x)[-1].lower() == '.pdf'])
+            for rownum,fname in enumerate(flist):
+                dname,e = os.path.splitext(fname)
+                sfsize = self.getfSize(fname,self.opts.output_dir)
+                if e.lower() == '.pdf' : # compress and make a thumbnail
+                    thumb = '%s.%s' % (dname,self.thumbformat)
+                    pdff = os.path.join(self.opts.output_dir,fname)
+                    retval = self.compressPDF(inpdf=pdff,thumbformat=self.thumbformat)
+                    if retval == 0:
+                        pdflist.append((fname,thumb))
+                    else:
+                        pdflist.append((fname,fname))
+                if (rownum+1) % 2 == 0:
+                    fhtml.append('<tr class="odd_row"><td><a href="%s">%s</a></td><td>%s</td></tr>' % (fname,fname,sfsize))
+                else:
+                    fhtml.append('<tr><td><a href="%s">%s</a></td><td>%s</td></tr>' % (fname,fname,sfsize))
+            for logfname in logfiles: # expect at least tlog - if more
+                if os.path.abspath(logfname) == os.path.abspath(self.tlog): # handled later
+                    sectionname = 'All tool run'
+                    if (len(logfiles) > 1):
+                        sectionname = 'Other'
+                    ourpdfs = pdflist
+                else:
+                    realname = os.path.basename(logfname)
+                    sectionname = os.path.splitext(realname)[0].split('_')[0] # break in case _ added to log
+                    ourpdfs = [x for x in pdflist if os.path.basename(x[0]).split('_')[0] == sectionname]
+                    pdflist = [x for x in pdflist if os.path.basename(x[0]).split('_')[0] <> sectionname] # remove
+                nacross = 1
+                npdf = len(ourpdfs)
+
+                if npdf > 0:
+                    nacross = math.sqrt(npdf) ## int(round(math.log(npdf,2)))
+                    if int(nacross)**2 != npdf:
+                        nacross += 1
+                    nacross = int(nacross)
+                    width = min(400,int(1200/nacross))
+                    html.append('<div class="toolFormTitle">%s images and outputs</div>' % sectionname)
+                    html.append('(Click on a thumbnail image to download the corresponding original PDF image)<br/>')
+                    ntogo = nacross # counter for table row padding with empty cells
+                    html.append('<div><table class="simple" cellpadding="2" cellspacing="2">\n<tr>')
+                    for i,paths in enumerate(ourpdfs): 
+                        fname,thumb = paths
+                        s= """<td><a href="%s"><img src="%s" title="Click to download a PDF of %s" hspace="5" width="%d" 
+                           alt="Image called %s"/></a></td>\n""" % (fname,thumb,fname,width,fname)
+                        if ((i+1) % nacross == 0):
+                            s += '</tr>\n'
+                            ntogo = 0
+                            if i < (npdf - 1): # more to come
+                               s += '<tr>'
+                               ntogo = nacross
+                        else:
+                            ntogo -= 1
+                        html.append(s)
+                    if html[-1].strip().endswith('</tr>'):
+                        html.append('</table></div>\n')
+                    else:
+                        if ntogo > 0: # pad
+                           html.append('<td>&nbsp;</td>'*ntogo)
+                        html.append('</tr></table></div>\n')
+                logt = open(logfname,'r').readlines()
+                logtext = [x for x in logt if x.strip() > '']
+                html.append('<div class="toolFormTitle">%s log output</div>' % sectionname)
+                if len(logtext) > 1:
+                    html.append('\n<pre>\n')
+                    html += logtext
+                    html.append('\n</pre>\n')
+                else:
+                    html.append('%s is empty<br/>' % logfname)
+        if len(fhtml) > 0:
+           fhtml.insert(0,'<div><table class="colored" cellpadding="3" cellspacing="3"><tr><th>Output File Name (click to view)</th><th>Size</th></tr>\n')
+           fhtml.append('</table></div><br/>')
+           html.append('<div class="toolFormTitle">All output files available for downloading</div>\n')
+           html += fhtml # add all non-pdf files to the end of the display
+        else:
+            html.append('<div class="warningmessagelarge">### Error - %s returned no files - please confirm that parameters are sane</div>' % self.opts.interpreter)
+        html.append(galhtmlpostfix)
+        htmlf = file(self.opts.output_html,'w')
+        htmlf.write('\n'.join(html))
+        htmlf.write('\n')
+        htmlf.close()
+        self.html = html
+
+    def run(self):
+        """
+        scripts must be small enough not to fill the pipe!
+        """
+        my_env = os.environ.copy()
+        if self.opts.output_dir:
+            ste = open(self.elog,'w')
+            sto = open(self.tlog,'w')
+            sto.write('## Toolfactory running %s as %s script\n' % (self.toolname,self.opts.interpreter))
+            sto.flush()
+            p = subprocess.Popen(self.cl,shell=False,stdout=sto,stderr=ste,cwd=self.opts.output_dir,env=my_env)
+            retval = p.wait()
+            sto.close()
+            ste.close()
+            # get stderr, allowing for case where it's very large
+            tmp_stderr = open( self.elog, 'rb' )
+            stderr = ''
+            try:
+                while True:
+                    stderr += tmp_stderr.read( buffsize )
+                    if not stderr or len( stderr ) % buffsize != 0:
+                        break
+            except OverflowError:
+                pass
+            tmp_stderr.close()
+        else:
+            p = subprocess.Popen(self.cl,shell=False,env=my_env)
+            retval = p.wait()
+        if self.opts.make_HTML:
+            self.makeHtml()
+        return retval
+
+
+    def remove_me_runBash(self):
+        """
+        cannot use - for bash so use self.sfile
+        """
+        if self.opts.output_dir:
+            s = '## Toolfactory generated command line = %s\n' % ' '.join(self.cl)
+            ste = open(self.elog,'w')
+            sto = open(self.tlog,'w')
+            sto.write(s)
+            sto.flush()
+            p = subprocess.Popen(self.cl,shell=False,stdout=sto,stderr=ste,cwd=self.opts.output_dir)
+        else:
+            p = subprocess.Popen(self.cl,shell=False)            
+        retval = p.wait()
+        if self.opts.output_dir:
+            sto.close()
+            ste.close()
+            # get stderr, allowing for case where it's very large
+            tmp_stderr = open(self.elog, 'rb' )
+            stderr = ''
+            try:
+                while True:
+                    stderr += tmp_stderr.read( buffsize )
+                    if not stderr or len( stderr ) % buffsize != 0:
+                        break
+            except OverflowError:
+                pass
+            tmp_stderr.close()
+        return retval
+  
+
+def main():
+    u = """
+    This is a Galaxy wrapper. It expects to be called by a special purpose tool.xml as (eg):
+    <command interpreter="python">rgToolFactory.py --script_path "$scriptPath" --tool_name "foo" --interpreter "Rscript"
+    </command>
+    The tool writes a script to a scriptPath using a configfile.
+    Some things in the script are templates.
+    The idea here is that depending on how this code is called, it uses the specified interpreter
+    to run a (hopefully correct) script/template. Optionally generates a clone of itself
+    which will run that same script/template as a toolshed repository tarball for uploading to a toolshed.
+    There's now an updated version which allows arbitrary parameters.
+    And so it goes.
+    """
+    op = optparse.OptionParser()
+    a = op.add_option
+    a('--script_path',default=None)
+    a('--tool_name',default=None)
+    a('--interpreter',default=None)
+    a('--output_dir',default=None)
+    a('--output_html',default=None)
+    a('--input_tab',default="None")
+    a('--output_tab',default="None")
+    a('--user_email',default='Unknown')
+    a('--bad_user',default=None)
+    a('--make_Tool',default=None)
+    a('--make_HTML',default=None)
+    a('--help_text',default=None)
+    a('--tool_desc',default=None)
+    a('--new_tool',default=None)
+    a('--tool_version',default=None)
+    opts, args = op.parse_args()
+    assert not opts.bad_user,'UNAUTHORISED: %s is NOT authorized to use this tool until Galaxy admin adds %s to admin_users in universe_wsgi.ini' % (opts.bad_user,opts.bad_user)
+    assert opts.tool_name,'## Tool Factory expects a tool name - eg --tool_name=DESeq'
+    assert opts.interpreter,'## Tool Factory wrapper expects an interpreter - eg --interpreter=Rscript'
+    assert os.path.isfile(opts.script_path),'## Tool Factory wrapper expects a script path - eg --script_path=foo.R'
+    if opts.output_dir:
+        try:
+            os.makedirs(opts.output_dir)
+        except:
+            pass
+    r = ScriptRunner(opts)
+    if opts.make_Tool:
+        retcode = r.makeTooltar()
+    else:
+        retcode = r.run()
+    os.unlink(r.sfile)
+    if retcode:
+        sys.exit(retcode) # indicate failure to job runner
+
+
+if __name__ == "__main__":
+    main()
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rg_nri.xml	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,633 @@
+<tool id="rg_nri" name="NRI" version="0.03">
+  <description>and other model improvement measures</description>
+  <requirements>
+      <requirement type="package" version="3.2.2">R_3_2_2</requirement>
+      <requirement type="package" version="1.3.18">graphicsmagick</requirement>
+      <requirement type="package" version="9.10">ghostscript</requirement>
+      <requirement type="package" version="3.2">glmnet_lars_3_2</requirement>
+  </requirements>
+  <command interpreter="python">
+     rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rg_NRI"
+    --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes"
+  </command>
+<configfiles>
+<configfile name="runme">
+
+<![CDATA[
+
+### http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI code
+### http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full is the reference
+### lots of little tweaks and but fixes. Using t as a variable name seems fraught to me.
+### Ross Lazarus october 2014 for a Galaxy tool wrapper using the toolfactory infrastucture
+
+#############################################################################
+###Functions to create risk assessment plots and associated summary statistics
+#############################################################################
+###
+###  (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns
+###   Last modified August 2014
+###
+###  Redistribution and use in source and binary forms, with or without
+###   modification, are permitted provided that the following conditions are met:
+###   * Redistributions of source code must retain the above copyright
+###     notice, this list of conditions and the following disclaimer.
+###   * Redistributions in binary form must reproduce the above copyright
+###     notice, this list of conditions and the following disclaimer in
+###     the documentation and/or other materials provided with the distribution
+
+### FUNCTIONS
+### raplot
+###       Produces a Risk Assessment Plot and outputs the coordinates of the four curves
+###       Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of
+###       Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911
+###
+### statistics.raplot
+###       Produces the NRIs, IDIs, IS, IP, AUCs.
+###       Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011).
+### Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085
+###       Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond.
+### Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929
+###       DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach.
+### Biometrics, 44(3), 837–845.
+###
+### summary.raplot
+###       Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot"))
+
+
+### Required arguments for all functions:
+###   x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object
+###   x2 is calculated risk (eg from a glm) for the alternative model
+###   y is the case-control indicator (0 for controls, 1 for cases)
+### Optional argument
+###   t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween.  eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1)
+
+
+### risk assessment plot
+
+library('e1071')
+library('caret')
+library('pROC')
+library('Hmisc')
+library('pracma')
+
+raplot = function(x1, x2, y, outplot, title) {
+
+    roc.model1 = roc(y, x1)
+    roc.model2 = roc(y, x2)
+    sens.model1 = roc.model1\$sensitivities
+    spec.model1 = 1 - roc.model1\$specificities
+    n.model1 = length(sens.model1)
+    thresh.model1 = roc.model1\$thresholds
+    thresh.model1 = thresh.model1[c(-1,-n.model1)]
+    sens.model1 = sens.model1[c(-1,-n.model1)]
+    spec.model1 = spec.model1[c(-1,-n.model1)]
+    sens.model2 = roc.model2\$sensitivities
+    spec.model2 = 1 - roc.model2\$specificities
+    n.model2 = length(sens.model2)
+    thresh.model2 = roc.model2\$thresholds
+    thresh.model2[1]=0
+    thresh.model2[length(thresh.model2)]=1
+    thresh.model2 = thresh.model2[c(-1,-n.model2)]
+    sens.model2 = sens.model2[c(-1,-n.model2)]
+    spec.model2 = spec.model2[c(-1,-n.model2)]
+
+    n.model1 = length(sens.model1)
+    n.model2 = length(sens.model2)
+
+    ### actual plotting
+    pdf(outplot)
+    plot(thresh.model1, sens.model1, xlim = c(0, 1), ylim = c(0, 1), type = "n",
+         lty = 2, lwd = 2, xlab = "Risk of Event", ylab = "", col = "black", main=title)
+    grid()
+
+    polygon(x = c(thresh.model1, thresh.model2[n.model2:1]),
+            y = c(sens.model1, sens.model2[n.model2:1]), border = NA, col = gray(0.8))
+    polygon(x = c(thresh.model1, thresh.model2[n.model2:1]),
+            y = c(spec.model1, spec.model2[n.model2:1]), border = NA, col = gray(0.8))
+
+    lines(thresh.model1, sens.model1, type = "l", lty = 2, lwd = 2, col = "black")
+    lines(thresh.model2, sens.model2, type = "l", lty = 1, lwd = 2, col = "black")
+
+    lines(thresh.model1, spec.model1, type = "l", lty = 2, lwd = 2, col = "red")
+    lines(thresh.model2, spec.model2, type = "l", lty = 1, lwd = 2, col = "red")
+
+    text(x = -0.15, y = 0.4, labels = "Sensitivity, ", col = "black", xpd = TRUE, srt = 90)
+    text(x = -0.15, y = 0.4 + 0.175, labels = "1-Specificity", col = "red", xpd = TRUE, srt = 90)
+    legend("topleft", c("Event: New model", "Event: Baseline model",
+                         "No Event: New model", "No Event: Baseline model"),
+                          col = c("black", "black", "red", "red"),
+                          lty = c(1,2, 1, 2), lwd = 2, bty = "n")
+    dev.off()
+    return(data.frame("Null.p.sens"=thresh.model1,
+                "Null.sens"=sens.model1,
+                "Null.p.1spec"=thresh.model1,
+                "Null.1spec"=sens.model1,
+                "Alt.p.sens"=thresh.model2,
+                "Alt.sens"=sens.model2,
+                "Alt.p.1spec"=thresh.model2,
+                "Alt.1spec"=sens.model2))
+
+}
+
+
+
+### statistics from a raplot (is an adaptation of improveProb() from Hmisc)
+
+statistics.raplot = function(x1, x2, y, threshvec)
+{
+
+    s = is.na(x1 + x2 + y)  ###Remove rows with missing data
+    if (any(s)) {
+        smiss = sum(s)
+        s = !s
+        x1 = x1[s]
+        x2 = x2[s]
+        y = y[s]
+        print.noquote(paste('Warning: removed',smiss,'cases with missing values'))
+    }
+    n = length(y)
+    y = as.numeric(y)
+    u = sort(unique(y))
+    if (length(u) != 2 || u[1] != 0 || u[2] != 1) {
+        print.noquote("INPUT ERROR: y must have only two values: 0 and 1")
+        sink()
+        quit(save="no",status=2)
+        }
+    r = range(x1, x2)
+    if (r[1] < 0 || r[2] > 1) {
+        print.noquote("INPUT ERROR: x1 and x2 must be in [0,1]")
+        sink()
+        quit(save="no",status=3)
+        }
+    incidence=sum(y)/n
+    if (missing(threshvec)) {
+    threshvec=c(0, incidence,1)
+    print(paste('threshvec missing. using',paste(threshvec,collapse=',')))
+    }
+    a = (y == 1)
+    b = (y == 0)
+    na = sum(a)
+    nb = sum(b)
+    d = x2 - x1
+    ### NRI
+    n.thresh=length(threshvec)-1
+    risk.class.x1.ev=cut2(x1[a],threshvec)
+    risk.class.x2.ev=cut2(x2[a],threshvec)
+    thresh=c()
+    lt = length(threshvec)
+    for (i in 1:(lt-1)) {
+     thresh[i] = paste("[",toString(threshvec[i]),",",toString(threshvec[i+1]),"]")
+    }
+    levels(risk.class.x1.ev)=thresh
+    levels(risk.class.x2.ev)=thresh
+    cM.ev=confusionMatrix(risk.class.x2.ev,risk.class.x1.ev)
+    pup.ev=0
+    pdown.ev=0
+    for (i in 1:(n.thresh-1)) { pup.ev = pup.ev + sum(cM.ev\$table[(i+1):n.thresh,i])}
+    for (i in 2:n.thresh) { pdown.ev = pdown.ev + sum(cM.ev\$table[1:(i-1),i])}
+    pup.ev=pup.ev/na
+    pdown.ev=pdown.ev/na
+    risk.class.x1.ne=cut2(x1[b],threshvec)
+    risk.class.x2.ne=cut2(x2[b],threshvec)
+    levels(risk.class.x1.ne)=thresh
+    levels(risk.class.x2.ne)=thresh
+    cM.ne=confusionMatrix(risk.class.x2.ne,risk.class.x1.ne)
+    pup.ne=0
+    pdown.ne=0
+    for (i in 1:(n.thresh-1)){pup.ne=pup.ev+sum(cM.ne\$table[(i+1):n.thresh,i])}
+    for (i in 2:n.thresh){pdown.ne=pdown.ne+sum(cM.ne\$table[1:(i-1),i])}
+    pdown.ne=pdown.ne/nb
+    pup.ne=pup.ne/nb
+    nri = pup.ev - pdown.ev - (pup.ne - pdown.ne)
+    se.nri = sqrt((pup.ev + pdown.ev)/na + (pup.ne + pdown.ne)/nb)
+    z.nri = nri/se.nri
+    nri.ev = pup.ev - pdown.ev
+    se.nri.ev = sqrt((pup.ev + pdown.ev)/na)
+    z.nri.ev = nri.ev/se.nri.ev
+    nri.ne = pdown.ne - pup.ne
+    se.nri.ne = sqrt((pdown.ne + pup.ne)/nb)
+    z.nri.ne = nri.ne/se.nri.ne
+    ### Category Free NRI calculations
+    cfpup.ev = mean(d[a] > 0)
+    cfpup.ne = mean(d[b] > 0)
+    cfpdown.ev = mean(d[a] < 0)
+    cfpdown.ne = mean(d[b] < 0)
+    cfnri = cfpup.ev - cfpdown.ev - (cfpup.ne - cfpdown.ne)
+    se.cfnri = sqrt((cfpup.ev + cfpdown.ev)/na + (cfpup.ne + cfpdown.ne)/nb)
+    z.cfnri = cfnri/se.cfnri
+    cfnri.ev = cfpup.ev - cfpdown.ev
+    se.cfnri.ev = sqrt((cfpup.ev + cfpdown.ev)/na)
+    z.cfnri.ev = cfnri.ev/se.cfnri.ev
+    cfnri.ne = cfpdown.ne - cfpup.ne
+    se.cfnri.ne = sqrt((cfpdown.ne + cfpup.ne)/nb)
+    z.cfnri.ne = cfnri.ne/se.cfnri.ne
+    ### IDI calculations
+    improveSens = sum(d[a])/na
+    improveSpec = -sum(d[b])/nb
+    idi.ev = mean(improveSens)
+    idi.ne = mean(improveSpec)
+    idi = idi.ev - idi.ne
+    var.ev = var(d[a])/na
+    se.idi.ev = sqrt(var.ev)
+    z.idi.ev = idi.ev/se.idi.ev
+    var.ne = var(d[b])/nb
+    se.idi.ne = sqrt(var.ne)
+    z.idi.ne = idi.ne/se.idi.ne
+    se.idi = sqrt(var.ev + var.ne)
+    z.idi = idi/se.idi
+    ### AUC calculations
+    roc.x1 = roc(y, x1)
+    auc.x1 = auc(roc.x1)
+    ci.auc.x1 = ci.auc(roc.x1)
+    se.auc.x1 = (ci.auc.x1[3] - auc.x1)/qnorm(0.975)
+    roc.x2 = roc(y, x2)
+    auc.x2 = auc(roc.x2)
+    ci.auc.x2 = ci.auc(roc.x2)
+    se.auc.x2 = (ci.auc.x2[3] - auc.x2)/qnorm(0.975)
+    roc.test.x1.x2 = roc.test(roc.x1, roc.x2)  ###Uses the default Delong method
+    sens.x1 = roc.x1\$sensitivities
+    spec.x1 = 1 - roc.x1\$specificities
+    n.x1 = length(sens.x1)
+    x1 = roc.x1\$thresholds
+    x1 = x1[c(-1,-n.x1)]
+    sens.x1 = sens.x1[c(-1,-n.x1)]
+    spec.x1 = spec.x1[c(-1,-n.x1)]
+    sens.x2 = roc.x2\$sensitivities
+    spec.x2 = 1 - roc.x2\$specificities
+    n.x2 = length(sens.x2)
+    x2 = roc.x2\$thresholds
+    x2 = x2[c(-1,-n.x2)]
+    sens.x2 = sens.x2[c(-1,-n.x2)]
+    spec.x2 = spec.x2[c(-1,-n.x2)]
+    ### Integrated sensitivity and 1-specificity calculations
+    is.x1 = trapz(x = x1, y = sens.x1)  ### area under curves (relates to integrated sens, 1-spec)
+    is.x2 = trapz(x = x2, y = sens.x2)
+    ip.x1 = trapz(x = x1, y = spec.x1)
+    ip.x2 = trapz(x = x2, y = spec.x2)
+
+    ### Output
+    output = c(n, na, nb, pup.ev, pup.ne, pdown.ev, pdown.ne, nri, se.nri, z.nri,
+                nri.ev, se.nri.ev, z.nri.ev, nri.ne, se.nri.ne, z.nri.ne,
+                cfpup.ev, cfpup.ne, cfpdown.ev, cfpdown.ne, cfnri, se.cfnri, z.cfnri,
+                cfnri.ev, se.cfnri.ev, z.cfnri.ev, cfnri.ne, se.cfnri.ne, z.cfnri.ne,
+                improveSens, improveSpec, idi.ev, se.idi.ev, z.idi.ev, idi.ne,
+                se.idi.ne, z.idi.ne, idi, se.idi, z.idi, is.x1, NA, is.x2, NA,
+                ip.x1, NA, ip.x2, NA, auc.x1, se.auc.x1, auc.x2, se.auc.x2,
+                roc.test.x1.x2\$p.value,incidence)
+    names(output) = c("n", "na", "nb", "pup.ev", "pup.ne", "pdown.ev", "pdown.ne",
+                       "nri", "se.nri", "z.nri", "nri.ev", "se.nri.ev", "z.nri.ev",
+                       "nri.ne", "se.nri.ne", "z.nri.ne",
+                       "cfpup.ev", "cfpup.ne", "cfpdown.ev", "cfpdown.ne",
+                       "cfnri", "se.cfnri", "z.cfnri", "cfnri.ev", "se.cfnri.ev", "z.cfnri.ev",
+                       "cfnri.ne", "se.cfnri.ne", "z.cfnri.ne", "improveSens", "improveSpec",
+                       "idi.ev", "se.idi.ev", "z.idi.ev", "idi.ne", "se.idi.ne",
+                       "z.idi.ne", "idi", "se.idi", "z.idi", "is.x1", "se.is.x1",
+                       "is.x2", "se.is.x2", "ip.x1", "se.ip.x1", "ip.x2", "se.ip.x2",
+                       "auc.x1", "se.auc.x1", "auc.x2", "se.auc.x2",
+                       "roc.test.x1.x2.pvalue","incidence")
+    resdf = data.frame(N=n, Na=na, Nb=nb, pup.ev=pup.ev, pup.ne=pup.ne, pdown.ev=pdown.ev, pdown.ne=pdown.ne, NRI=nri, NRI.se=se.nri, NRI.z=z.nri,
+                NRI.ev=nri.ev, NRI.ev.se=se.nri.ev, NRI.ev.z=z.nri.ev, NRI.ne=nri.ne, NRI.ne.se=se.nri.ne, NRI.ne.z=z.nri.ne,
+                cfpup.ev=cfpup.ev, cfpup.ne=cfpup.ne, cfpdown.ev=cfpdown.ev, cfpdown.ne=cfpdown.ne, CFNRI=cfnri, CFNRI.se=se.cfnri, CFNRI.z=z.cfnri,
+                CFNRI.ev=cfnri.ev, CFNRI.ev.se=se.cfnri.ev, CFNRI.ev.z=z.cfnri.ev, CFNRI.ne=cfnri.ne, CFNRI.ne.se=se.cfnri.ne, CFNRI.ne.z=z.cfnri.ne,
+                improvSens=improveSens, improvSpec=improveSpec, IDI.ev=idi.ev, IDI.ev.se=se.idi.ev, IDI.ev.z=z.idi.ev, IDI.ne=idi.ne,
+                IDI.ne.se=se.idi.ne, IDI.ne.z=z.idi.ne, IDI=idi, IDI.se=se.idi, IDI.z=z.idi, isx1=is.x1, isx2=is.x2,
+                ipxi=ip.x1, ipx2=ip.x2, AUC.x1=auc.x1, AUC.x1.se=se.auc.x1, AUC.x2=auc.x2, AUC.x2.se=se.auc.x2,
+                roctestpval=roc.test.x1.x2\$p.value,incidence=incidence)
+    tr = t(resdf)
+    tresdf = data.frame(measure=colnames(resdf),value=tr[,1])
+    return(list(resdf=tresdf,output=output))
+}
+
+
+### More comprehensive summary statistics from a raplot
+### Choice of confidence intervals determined through asymptotics or bootstrapping (n.boot = ### of bootstrap resamples)
+### dp is number of decimal places for results table
+
+summary.raplot = function(x1, x2, y, threshvec, cis = "boot", conf.level = 0.95, n.boot = 2000, dp = 4, stat_ra=NA)
+{
+        results = stat_ra
+        if (cis == "boot") {
+            print.noquote("Bootstrap estimates for SE")
+            results.boot = matrix(NA, n.boot, length(names(results)))
+
+            colnames(results.boot) = names(results)
+
+            for (i in 1:n.boot) {
+                ###boot.index = sample(length(cc.status), replace = TRUE)
+                ###risk.model1.boot = risk.model1[boot.index]
+                ###risk.model2.boot = risk.model2[boot.index]
+                ###cc.status.boot = cc.status[boot.index]
+                boot.index = sample(length(y), replace = TRUE)
+                risk.model1.boot = x1[boot.index]
+                risk.model2.boot = x2[boot.index]
+                cc.status.boot = y[boot.index]
+                r = statistics.raplot(x1 = risk.model1.boot, x2 = risk.model2.boot, y = cc.status.boot)
+                results.boot[i, ] = r\$output
+            }
+
+            results.se.boot = apply(results.boot, 2, sd)
+            print(paste(results.se.boot,collapse=','))
+
+
+            results[grep("se", names(results))] = results.se.boot[grep("se", names(results)) - 1]
+
+            }
+
+
+
+    ### calculate cis and return
+
+    z = abs(qnorm((1 - conf.level)/2))
+
+    results.matrix = matrix(NA, 24, 2)
+
+    results.matrix[1, ] = c("Total (n)", results["n"])
+    results.matrix[2, ] = c("Events (n)", results["na"])
+    results.matrix[3, ] = c("Non-events (n)", results["nb"])
+    results.matrix[4, ] = c("Category free NRI and summary statistics","-------------------------")
+    results.matrix[5, ] = c("cfNRI events (%)",
+                             paste(round(100*results["cfnri.ev"], dp-2), " (",
+                                   round(100*results["cfnri.ev"] - z * 100*results["se.cfnri.ev"], dp-2),
+                                    " to ", round(100*results["cfnri.ev"] +
+                                      z * 100*results["se.cfnri.ev"], dp-2), ")", sep = ""))
+    results.matrix[6, ] = c("cfNRI non-events (%)",
+                             paste(round(100*results["cfnri.ne"], dp-2), " (",
+                             round(100*results["cfnri.ne"] - z * 100*results["se.cfnri.ne"], dp)-2,
+                             " to ", round(100*results["cfnri.ne"] +  z * 100*results["se.cfnri.ne"],
+                                           dp-2), ")", sep = ""))
+    results.matrix[7, ] = c("cfNRI (%)",
+                             paste(round(100*results["cfnri"], dp-2), " (",
+                             round(100*results["cfnri"] - z * 100*results["se.cfnri"], dp-2),
+                             " to ", round(100*results["cfnri"] + z * 100*results["se.cfnri"],
+                                           dp-2), ")", sep = ""))
+    results.matrix[8, ] = c("NRI and summary statistics","-------------------------")
+    results.matrix[9, ] = c("NRI events (%)",
+                             paste(round(100*results["nri.ev"], dp-2), " (",
+                                   round(100*results["nri.ev"] - z * 100*results["se.nri.ev"], dp-2),
+                                   " to ", round(100*results["nri.ev"] +
+                                                   z * 100*results["se.nri.ev"], dp-2), ")", sep = ""))
+    results.matrix[10, ] = c("NRI non-events (%)",
+                             paste(round(100*results["nri.ne"], dp-2), " (",
+                                   round(100*results["nri.ne"] - z * 100*results["se.nri.ne"], dp-2),
+                                   " to ", round(100*results["nri.ne"] +  z * 100*results["se.nri.ne"],
+                                                 dp-2), ")", sep = ""))
+    results.matrix[11, ] = c("NRI (%)",
+                             paste(round(100*results["nri"], dp-2), " (",
+                                   round(100*results["nri"] - z * 100*results["se.nri"], dp-2),
+                                   " to ", round(100*results["nri"] + z * 100*results["se.nri"],
+                                                 dp-2), ")", sep = ""))
+    results.matrix[12, ] = c("IDI and summary statistics","-------------------------")
+    results.matrix[13, ] = c("IDI events",
+                             paste(round(results["idi.ev"], dp), " (",
+                              round(results["idi.ev"] - z * results["se.idi.ev"], dp),
+                              " to ", round(results["idi.ev"] + z * results["se.idi.ev"],
+                                            dp), ")", sep = ""))
+    results.matrix[14, ] = c("IDI non-events",
+                              paste(round(results["idi.ne"], dp), " (",
+                              round(results["idi.ne"] - z * results["se.idi.ne"], dp),
+                              " to ", round(results["idi.ne"] + z * results["se.idi.ne"],
+                                            dp), ")", sep = ""))
+    results.matrix[15, ] = c("IDI",
+                              paste(round(results["idi"], dp), " (",
+                              round(results["idi"] - z * results["se.idi"], dp),
+                              " to ", round(results["idi"] + z * results["se.idi"],
+                              dp), ")", sep = ""))
+    results.matrix[16, ] = c("IS (null model)",
+                              paste(round(results["is.x1"], dp), " (",
+                              round(results["is.x1"] - z * results["se.is.x1"], dp),
+                              " to ", round(results["is.x1"] + z * results["se.is.x1"],
+                                            dp), ")", sep = ""))
+    results.matrix[17, ] = c("IS (alt model)",
+                              paste(round(results["is.x2"], dp), " (",
+                              round(results["is.x2"] - z * results["se.is.x2"], dp),
+                              " to ", round(results["is.x2"] + z * results["se.is.x2"],
+                                            dp), ")", sep = ""))
+    results.matrix[18, ] = c("IP (null model)",
+                              paste(round(results["ip.x1"], dp), " (",
+                              round(results["ip.x1"] - z * results["se.ip.x1"], dp),
+                              " to ", round(results["ip.x1"] + z *  results["se.ip.x1"],
+                                            dp), ")", sep = ""))
+    results.matrix[19, ] = c("IP (alt model)",
+                              paste(round(results["ip.x2"], dp), " (",
+                              round(results["ip.x2"] - z * results["se.ip.x2"], dp),
+                              " to ", round(results["ip.x2"] + z * results["se.ip.x2"],
+                                            dp), ")", sep = ""))
+    results.matrix[20, ] = c("AUC","-------------------------")
+    results.matrix[21, ] = c("AUC (null model)",
+                              paste(round(results["auc.x1"], dp), " (",
+                              round(results["auc.x1"] - z * results["se.auc.x1"], dp),
+                              " to ", round(results["auc.x1"] + z * results["se.auc.x1"],
+                                            dp), ")", sep = ""))
+    results.matrix[22, ] = c("AUC (alt model)",
+                              paste(round(results["auc.x2"], dp), " (",
+                              round(results["auc.x2"] - z * results["se.auc.x2"], dp),
+                              " to ", round(results["auc.x2"] +  z * results["se.auc.x2"],
+                                            dp), ")", sep = ""))
+    results.matrix[23, ] = c("difference (P)", round(results["roc.test.x1.x2.pvalue"], dp))
+    results.matrix[24, ] = c("Incidence", round(results["incidence"], dp))
+
+    return(results.matrix)
+}
+
+
+
+]]>
+
+options(width=120)
+options(digits=5)
+logf = file("rgNRI.log", open = "a")
+sink(logf,type = c("output", "message"))
+Out_Dir = "$html_file.files_path"
+Input1 =  "$input1"
+Input2 =  "$input2"
+myTitle = "$title"
+outtab = "$nri_file"
+input1_obs = $input1_observed
+input1_pred = $input1_predicted
+input1_id = $input1_id
+input2_obs = $input2_observed
+input2_pred = $input2_predicted
+input2_id = $input2_id
+in1 = read.table(Input1,head=T,sep='\t')
+in2 = read.table(Input2,head=T,sep='\t')
+id1 = in1[,input1_id]
+id2 = in2[,input2_id]
+useme1 = in1[which(id1 %in% id2),]
+useme2 = in2[which(id2 %in% id1),]
+id1 = useme1[,input1_id]
+id2 = useme2[,input2_id]
+useme1 = useme1[order(id1),]
+useme2 = useme2[order(id2),]
+x1 = useme1[,input1_pred]
+x2 = useme2[,input2_pred]
+y1 = useme1[,input1_obs]
+y2 = useme2[,input2_obs]
+n.boot = $CImeth.nboot
+conf.level = 0.95
+cis = "$CImeth.cis"
+digits = 4
+nydiff = sum(y1 != y2)
+if (nydiff &gt; 0) {
+  print.noquote(paste('Input error: observed status column has',nydiff,'differences - cannot reliably proceed'))
+  quit(save="no",status=1)
+  }
+y = y2
+outplot = 'rgNRI_EventRisk.pdf'
+res = raplot(x1=x1, x2=x2, y=y, outplot=outplot,title=myTitle)
+
+stats = statistics.raplot(x1=x1, x2=x2, y=y)
+res1 = stats\$resdf
+out1 = stats\$output
+print.noquote('Results:')
+print.noquote(res1,digits=4)
+res2 = summary.raplot(x1=x1, x2=x2, y=y, cis = cis, conf.level = conf.level, n.boot = n.boot, dp = digits, stat_ra=out1)
+print.noquote('Summary:')
+print.noquote(res2,digits=4)
+write.table(format(res1,digits=4),outtab,quote=F, col.names=F,sep="\t",row.names=F)
+print.noquote('SessionInfo for this R session:')
+sessionInfo()
+print.noquote('warnings for this R session:')
+warnings()
+sink()
+</configfile>
+</configfiles>
+  <inputs>
+     <param name="title" type="text" value="NRI test" label="Plot Title" help="Will appear as the title for the comparison plot"/>
+    <param name="input1"  type="data" format="tabular" label="Select a tabular file from the baseline model with predicted and observed outcome column for each subject"
+    multiple='False' help="Observed and predicted status columns must be selected from this file below - NOTE both models must be in same order with exact matches in all observed outcomes" optional="False"/>
+    <param name="input1_observed" label="Select column containing observed outcome (0 for no event, 1 for an event)" type="data_column" data_ref="input1" numerical="True"
+         multiple="False" use_header_names="True" optional="False" help = "Observed outcomes are compared in the two files to check that the datasets are from the same data"/>
+    <param name="input1_predicted" label="Select column containing predicted event probabilies from baseline model" type="data_column" data_ref="input1" numerical="True"
+         multiple="False" use_header_names="True" optional="False"  help="Must be in range 0-1"/>
+    <param name="input1_id" label="Select column containing subject ID from baseline model" type="data_column" data_ref="input1" numerical="True"
+         multiple="False" use_header_names="True" optional="False" help="Subect IDs are needed to match subjects to compare predictions in the two inputs"/>
+    <param name="input2"  type="data" format="tabular" label="Select a tabular file from the new model with predicted and observed outcome columns for each subject"
+    multiple='False' help="Observed and predicted status columns must be selected from this file below" />
+    <param name="input2_observed" label="Select column containing observed outcome (0 for no event, 1 for an event)" type="data_column" data_ref="input2" numerical="True"
+         multiple="False" use_header_names="True" optional="False" help = "Observed outcomes are compared in the two files to check that the datasets are from the same data"/>
+    <param name="input2_predicted" label="Select column containing predicted event probabilities from the new model" type="data_column" data_ref="input2" numerical="True"
+         multiple="False" use_header_names="True" optional="False" help="Must be in range 0-1"/>
+    <param name="input2_id" label="Select column containing subject ID from the new model" type="data_column" data_ref="input2" numerical="True"
+         multiple="False" use_header_names="True" optional="False"  help="Subect IDs are needed to match subjects to compare predictions in the two inputs"/>
+    <conditional name="CImeth">
+        <param name="cis" type="select" label="CI calculation method"
+             help="Bootstrap will take time - a long time for thousands - asymptotic is quick and informative">
+                <option value="asymptotic" selected="true">Asymptotic estimate</option>
+                <option value="boot">Bootstrap for empirical CIs</option>
+        </param>
+        <when value="boot">
+            <param name="nboot" type="integer" value="1000" label="Number of bootstrap replicates"/>
+        </when>
+        <when value="asymptotic">
+            <param name="nboot" type="hidden" value="1000"/>
+        </when>
+    </conditional>
+  </inputs>
+  <outputs>
+    <data format="html" name="html_file" label="${title}.html"/>
+    <data format="tabular" name="nri_file" label="${title}_nrires.xls"/>
+  </outputs>
+ <tests>
+    <test>
+     <param name='title' value='nri_test1' />
+     <param name='input1' value='nri_test1.xls' ftype='tabular' />
+     <param name='input2' value='nri_test1.xls' ftype='tabular' />
+     <param name='input1_id' value="1" />
+     <param name='input1_observed' value="2" />
+     <param name='input1_predicted' value="3" />
+     <param name='input2_observed' value="2" />
+     <param name='input2_predicted' value="4" />
+     <output name='html_file' file='nri_test1_out.html'  compare='diff' lines_diff='10' />
+     <output name='nri_file' file='nri_test1_out.xls' />
+    </test>
+</tests>
+<help>
+
+**Before you start**
+
+This is a simple tool to calculate various measures of improvement in prediction between two models described in pickering_paper_
+It is based on an R script pickering_code_ written by Dr John W Pickering and Dr David Cairns from sunny Otago University which
+has been debugged and slightly adjusted to fit a Galaxy tool wrapper.
+
+
+**What it does**
+
+Copied from the documentation in pickering_code_ ::
+
+
+    Functions to create risk assessment plots and associated summary statistics
+
+
+      (c) 2012 Dr John W Pickering, john.pickering@otago.ac.nz, and Dr David Cairns
+       Last modified August 2014
+
+      Redistribution and use in source and binary forms, with or without
+       modification, are permitted provided that the following conditions are met:
+       * Redistributions of source code must retain the above copyright
+         notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above copyright
+         notice, this list of conditions and the following disclaimer in
+         the documentation and/or other materials provided with the distribution
+
+     FUNCTIONS
+     raplot
+           Produces a Risk Assessment Plot and outputs the coordinates of the four curves
+           Based on: Pickering, J. W. and Endre, Z. H. (2012). New Metrics for Assessing Diagnostic Potential of
+           Candidate Biomarkers. Clinical Journal of the American Society of Nephrology, 7, 1355–1364. doi:10.2215/CJN.09590911
+
+     statistics.raplot
+           Produces the NRIs, IDIs, IS, IP, AUCs.
+           Based on: Pencina, M. J., D'Agostino, R. B. and Steyerberg, E. W. (2011). Extensions of net reclassification improvement calculations to
+           measure usefulness of new biomarkers. Statistics in Medicine, 30(1), 11–21. doi:10.1002/sim.4085
+           Pencina, M. J., D'Agostino, R. B. and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the
+           ROC curve to reclassification and beyond.
+           Statistics in Medicine, 27(2), 157–172. doi:10.1002/sim.2929
+           DeLong, E., DeLong, D. and Clarke-Pearson, D. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves - a nonparametric approach.
+           Biometrics, 44(3), 837–845.
+
+     summary.raplot
+           Produces the NRIs, IDIs, IS, IP, AUCs with confidence intervals using a bootstrap or asymptotic procedure. (I prefer bootstrap which is chosed by cis=c("boot"))
+
+
+     Required arguments for all functions:
+       x1 is calculated risk (eg from a glm) for the null model, i.e. predict(,type="response") on a glm object
+       x2 is calculated risk (eg from a glm) for the alternative model
+       y is the case-control indicator (0 for controls, 1 for cases)
+     Optional argument
+       t are the boundaries of the risks for each group (ie 0, 1 and the thresholds beteween.  eg c(0,0,3,0,7,1)). If missing, defaults to c(0, the incidence, 1)
+
+
+**Input**
+
+The observed and predicted outcomes from two models to be compared.
+
+**Output**
+
+Lots'o'measures (TM) see pickering_paper_ for details
+
+**Attributions**
+
+pickering_paper_ is the paper the caclulations performed by this tool is based on
+
+pickering_code_ is the R function from John Pickering exposed by this Galaxy tool with minor modifications and hacks by Ross Lazarus.
+
+Galaxy_ (that's what you are using right now!) for gluing everything together
+
+Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
+licensed to you under the LGPL_ like other rgenetics artefacts
+
+.. _LGPL: http://www.gnu.org/copyleft/lesser.html
+.. _pickering_code: http://www.researchgate.net/publication/264672640_R_function_for_Risk_Assessment_Plot__reclassification_metrics_NRI_IDI_cfNRI
+.. _pickering_paper: http://cjasn.asnjournals.org/content/early/2012/05/24/CJN.09590911.full
+.. _Galaxy: http://getgalaxy.org
+
+
+</help>
+
+<citations>
+    <citation type="doi">doi: 10.2215/​CJN.09590911</citation>
+</citations>
+</tool>
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rglasso_cox.xml	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,910 @@
+<tool id="rglasso_cox" name="Lasso" version="0.03">
+  <description>and cox regression using elastic net</description>
+  <requirements>
+      <requirement type="package" version="3.2.2">R_3_2_2</requirement>
+      <requirement type="package" version="1.3.18">graphicsmagick</requirement>
+      <requirement type="package" version="9.10">ghostscript</requirement>
+      <requirement type="package" version="3.2">glmnet_lars_3_2</requirement>
+  </requirements>
+  <command interpreter="python">
+     rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "rglasso"
+    --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes"
+  </command>
+<configfiles>
+<configfile name="runme">
+<![CDATA[
+library('glmnet')
+library('lars')
+library('survival')
+library('pec')
+
+
+message=function(x) {print.noquote(paste(x,sep=''))}
+
+
+ross.cv.glmnet = function (x, y, weights, offset = NULL, lambda = NULL, type.measure = c("mse",
+    "deviance", "class", "auc", "mae"), nfolds = 10, foldid,
+    grouped = TRUE, keep = FALSE, parallel = FALSE, ...)
+{
+    if (missing(type.measure))
+        type.measure = "default"
+    else type.measure = match.arg(type.measure)
+    if (!is.null(lambda) && length(lambda) < 2)
+        stop("Need more than one value of lambda for cv.glmnet")
+    N = nrow(x)
+    if (missing(weights))
+        weights = rep(1, N)
+    else weights = as.double(weights)
+    y = drop(y)
+    glmnet.call = match.call(expand.dots = TRUE)
+    sel = match(c("type.measure", "nfolds", "foldid", "grouped",
+        "keep"), names(glmnet.call), F)
+    if (any(sel))
+        glmnet.call = glmnet.call[-sel]
+    glmnet.call[[1]] = as.name("glmnet")
+    glmnet.object = glmnet(x, y, weights = weights, offset = offset,
+        lambda = lambda, ...)
+    glmnet.object\$call = glmnet.call
+    is.offset = glmnet.object\$offset
+    lambda = glmnet.object\$lambda
+    if (inherits(glmnet.object, "multnet")) {
+        nz = predict(glmnet.object, type = "nonzero")
+        nz = sapply(nz, function(x) sapply(x, length))
+        nz = ceiling(apply(nz, 1, median))
+    }
+    else nz = sapply(predict(glmnet.object, type = "nonzero"),
+        length)
+    if (missing(foldid))
+        foldid = sample(rep(seq(nfolds), length = N))
+    else nfolds = max(foldid)
+    if (nfolds < 3)
+        stop("nfolds must be bigger than 3; nfolds=10 recommended")
+    outlist = as.list(seq(nfolds))
+    if (parallel && require(foreach)) {
+        outlist = foreach(i = seq(nfolds), .packages = c("glmnet")) %dopar%
+            {
+                sel = foldid == i
+                if (is.matrix(y))
+                  y_sub = y[!sel, ]
+                else y_sub = y[!sel]
+                if (is.offset)
+                  offset_sub = as.matrix(offset)[!sel, ]
+                else offset_sub = NULL
+                glmnet(x[!sel, , drop = FALSE], y_sub, lambda = lambda,
+                  offset = offset_sub, weights = weights[!sel],
+                  ...)
+            }
+    }
+    else {
+        for (i in seq(nfolds)) {
+            sel = foldid == i
+            if (is.matrix(y))
+                y_sub = y[!sel, ]
+            else y_sub = y[!sel]
+            if (is.offset)
+                offset_sub = as.matrix(offset)[!sel, ]
+            else offset_sub = NULL
+            outlist[[i]] = glmnet(x[!sel, , drop = FALSE],
+                y_sub, lambda = lambda, offset = offset_sub,
+                weights = weights[!sel], ...)
+        }
+    }
+    fun = paste("cv", class(glmnet.object)[[1]], sep = ".")
+    cvstuff = do.call(fun, list(outlist, lambda, x, y, weights,
+        offset, foldid, type.measure, grouped, keep))
+    cvm = cvstuff\$cvm
+    cvsd = cvstuff\$cvsd
+    cvname = cvstuff\$name
+
+    out = list(lambda = lambda, cvm = cvm, cvsd = cvsd, cvup = cvm +
+        cvsd, cvlo = cvm - cvsd, nzero = nz, name = cvname, glmnet.fit = glmnet.object)
+    if (keep)
+        out = c(out, list(fit.preval = cvstuff\$fit.preval, foldid = foldid))
+
+    lamin = if (type.measure == "auc")
+        getmin(lambda, -cvm, cvsd)
+    else getmin(lambda, cvm, cvsd)
+    out = c(out, as.list(lamin))
+    hitsse = rep(0,ncol(x))
+    hitsmin = rep(0,ncol(x))
+    names(hitsse) = colnames(x)
+    names(hitsmin) = colnames(x)
+    olmin = lamin\$lambda.min
+    ol1sd = lamin\$lambda.1se
+    lambs = c(olmin,ol1sd)
+    names(lambs) = c('olmin','ol1sd')
+    for (cvfit in outlist) {
+        colmin = which(cvfit\$lambda == olmin)
+        col1se = which(cvfit\$lambda == ol1sd)
+        nzmin = which(cvfit\$beta[,colmin] != 0)
+        nz1se = which(cvfit\$beta[,col1se] != 0)
+        hitsse[nz1se] = hitsse[nz1se] + 1
+        hitsmin[nzmin] = hitsmin[nzmin] + 1
+    }
+    obj = c(out,list(cvhits.1se=hitsse,cvhits.min=hitsmin))
+    class(obj) = "cv.glmnet"
+    obj
+}
+
+mdsPlot = function(dm,myTitle,groups=NA,outpdfname,transpose=T)
+{
+
+  samples = colnames(dm)
+  mt = myTitle
+  pcols=c('maroon')
+  if (! is.na(groups))
+  {
+  gu = unique(groups)
+  colours = rainbow(length(gu),start=0.1,end=0.9)
+  pcols = colours[match(groups,gu)]
+  }
+  mydata = dm
+  if (transpose==T)
+  {
+  mydata = t(dm)
+  }
+  npred = ncol(mydata)
+  d = dist(mydata)
+  fit = cmdscale(d,eig=TRUE, k=min(10,npred-2))
+  xmds = fit\$points[,1]
+  ymds = fit\$points[,2]
+  pdf(outpdfname)
+  plot(xmds, ymds, xlab="Dimension 1", ylab="Dimension 2",
+       main=paste(mt,"MDS Plot"),type="n", col=pcols, cex=0.35)
+  text(xmds, ymds, labels = row.names(mydata), cex=0.35, col=pcols)
+  grid(col="lightgray",lty="dotted")
+  dev.off()
+}
+
+
+getpredp_logistic = function(x,yvec,yvarname,id)
+{
+  yvals = unique(yvec)
+  if (length(yvals) != 2) {
+       message(c('ERROR: y does not have 2 values =',paste(yvals,collapse=',')))
+       return(NA)
+       }
+  cols = colnames(x)
+  if (length(cols) == 0) {
+       message('ERROR: No columns in input x? Cannot predict!')
+       return(NA)
+       }
+  cn = paste(cols, collapse = ' + ')
+
+  formstring=paste("y ~",cn)
+  form = as.formula(formstring)
+  ok = complete.cases(x)
+
+  if (sum(ok) < length(ok)) {
+    x = x[ok,]
+    yvec = yvec[ok]
+    id = id[ok]
+    }
+  nx = data.frame(id=id,x,y=yvec)
+  print('nx,yvec:')
+  print(head(nx,n=3))
+  print(yvec)
+  mdl = glm(form, data=nx, family="binomial", na.action=na.omit)
+  message(c('Model format =',formstring))
+  message(paste('Predictive model details used to generate logistic outcome probabilities for',yvarname,':'))
+  print(summary(md1))
+  print(anova(md1))
+  predp = predict(md1,nx,type="response")
+  p1 = data.frame(id=id,pred_response=predp,obs_response=yvec)
+  return(p1)
+}
+
+getpredp_cox = function(x,time,status,id,predict_at)
+{
+  cols = colnames(x)
+  if (length(cols) == 0) {
+       message('ERROR: No columns in input x? Cannot predict!')
+       return(NA)
+       }
+  cn = paste(colnames(x), collapse = ' + ')
+
+  formstring=paste("Surv(time, status) ~",cn)
+
+  form = as.formula(formstring)
+
+  ok = complete.cases(x)
+
+  if (sum(ok) < length(ok)) {
+    x = x[ok,]
+    time = time[ok]
+    status = status[ok]
+    id = id[ok]
+    }
+  nx = data.frame(x,time=time,status=status)
+  m1 = coxph(form, data=nx,singular.ok=TRUE)
+  print.noquote('Predictive model details used to generate survival probabilities:')
+  print.noquote(m1)
+  predpq = predictSurvProb(object=m1, newdata=nx, times=predict_at)
+  predpq = 1-predpq
+  colnames(predpq) = paste('p_surv_to',predict_at,sep='_')
+  p1 = data.frame(id=id,predpq,time=time,status=status)
+  return(p1)
+}
+
+
+dolasso_cox = function(x,y,debugOn=F,maxsteps=10000,nfold=10,xcolnames,ycolnames,optLambda='lambda.1se',out_full=F,out_full_file=NA,
+                             out_pred=F,out_pred_file=NA,cox_id=NA, descr='Cox test',do_standard=F,alpha=0.9,penalty,predict_at,mdsplots=F)
+{
+  logf = file("cox_rglasso.log", open = "a")
+  sink(logf,type = c("output", "message"))
+  res = NULL
+  if (mdsplots==T) {
+      outpdfname = 'cox_x_in_sample_space_MDS.pdf'
+      p = try({ mdsPlot(x,'measurements in sample space',groups=NA,outpdfname=outpdfname,transpose=T) },T)
+      if (class(p) == "try-error")
+      {
+        print.noquote(paste('Unable to produce predictors in sample space mds plot',p))
+      }
+      outpdfname = 'cox_samples_in_x_space_MDS.pdf'
+      p = try({mdsPlot(x,'samples in measurement space',groups=y,outpdfname=outpdfname,transpose=F) },T)
+      if (class(p) == "try-error")
+      {
+        print.noquote(paste('Unable to produce samples in measurement space mds plots',p))
+      }
+  }
+  if (is.na(predict_at)) { predict_at = quantile(y) }
+  message(paste('@@@ Cox model will be predicted at times =',paste(predict_at,collapse=',')))
+  do_standard = do_standard
+  standardize = do_standard
+  normalize = do_standard
+  p = try({larsres = glmnet(x,y,family='cox',standardize=standardize,alpha=alpha,penalty.factor=penalty )},T)
+  if (class(p) == "try-error")
+  {
+    print.noquote('Unable to run cox glmnet on your data')
+    print.noquote(p)
+    sink()
+    return(NA)
+  }
+  if (out_full == T)
+  {
+  b = as.matrix(larsres\$beta)
+  nb = length(colnames(b))
+  bcoef = b[,nb]
+  lastl = larsres\$lambda[length(larsres\$lambda)]
+  allres = data.frame(x=rownames(b),beta=bcoef,lambda=lastl)
+  write.table(format(allres,digits=5),out_full_file,quote=FALSE, sep="\t",row.names=F)
+  }
+
+  outpdf = paste('cox',descr,'glmnetdev.pdf',sep='_')
+  try(
+      {
+      pdf(outpdf)
+      plot(larsres,main='cox glmnet',label=T)
+      grid()
+      dev.off()
+      },T)
+
+  larscv = NA
+
+  p = try({larscv=ross.cv.glmnet(x,y,family=fam,type.measure='deviance',penalty=penalty)},T)
+  if (class(p) == "try-error") {
+     print.noquote(paste('Unable to cross validate your data',p))
+     sink()
+     return(NA)
+     }
+  lse = larscv\$cvhits.1se
+  lmin = larscv\$cvhits.min
+  tot = lse + lmin
+  allhits = data.frame(hits_lambda_1se = lse,hits_lambda_min = lmin)
+  nzhits = allhits[which(tot != 0),]
+  message('Times each predictor was selected in CV models (excluding zero count predictors)')
+  print.noquote(nzhits)
+  out_nz_file = 'cox_cross_validation_model_counts.xls'
+  write.table(nzhits,out_nz_file,quote=FALSE, sep="\t",row.names=F)
+
+  outpdf = paste('cox',descr,'glmnet_cvdeviance.pdf',sep='_')
+
+  p = try(
+     {
+     pdf(outpdf)
+     plot(larscv,main='Deviance',label=T)
+     grid()
+     dev.off()
+     },T)
+  if (optLambda == 'lambda.min') {
+      best_lambda = larscv\$lambda.min
+      bestcoef = as.matrix(coef(larscv, s = "lambda.min"))
+  } else {
+      best_lambda = larscv\$lambda.1se
+      bestcoef = as.matrix(coef(larscv, s = "lambda.1se"))
+  }
+  inmodel = which(bestcoef != 0)
+  coefs = bestcoef[inmodel]
+  preds = rownames(bestcoef)[inmodel]
+
+  names(coefs) = preds
+  pen = as.logical( ! penalty[inmodel])
+  if (out_pred==T)
+  {
+      if (length(inmodel) > 0 ) {
+          predcols = inmodel
+          xmat = as.matrix(x[,predcols])
+          colnames(xmat) = preds
+          bestpred = getpredp_cox(x=xmat,time=y[,'time'],status=y[,'status'],id=cox_id, predict_at=predict_at)
+          pred = data.frame(responsep=bestpred, best_lambda=best_lambda,lamchoice=optLambda,alpha=alpha)
+          write.table(pred,out_pred_file,quote=FALSE, sep="\t",row.names=F)
+        } else { print.noquote('WARNING: No coefficients in selected model to predict with - no predictions made') }
+    }
+  if (debugOn) {
+      print.noquote(paste('best_lambda=',best_lambda,'saving cox respreds=',paste(names(coefs),collapse=','),'as predictors of survival. Coefs=',paste(coefs,collapse=',')))
+      }
+  p = try({res = data.frame(regulator=names(coefs),partial_likelihood=coefs,forced_in=pen,glmnet_model='cox',best_lambda=best_lambda,
+     lambdaChoice=optLambda,alpha=alpha)},T)
+  if (class(p) == "try-error") {
+    message(paste('@@@ unable to return a dataframe',p))
+    sink()
+    return(NA)
+    }
+  print.noquote('@@@ Results preview:')
+  print.noquote(res,digits=5)
+  sink()
+  return(res)
+
+}
+
+
+do_lasso = function(x=NA,y=NA,do_standard=T,debugOn=T,defaultFam="gaussian",optLambda='minLambda',descr='description', indx=1,target='target',sane=F,
+                    alpha=0.9,nfold=10,penalty=c(),out_pred=F,out_pred_file='outpred',yvarname='yvar',id=c(),mdsplots=F)
+{
+  logf = file(paste(target,"rglasso.log",sep='_'), open = "a")
+  sink(logf,type = c("output", "message"))
+  res = NA
+  phe_is_bin = (length(unique(y)) == 2)
+  forcedin = paste(colnames(x)[which(penalty == 0)],collapse=',')
+  fam = "gaussian"
+  if (defaultFam %in% c("poisson","binomial","gaussian","multinomial")) fam=defaultFam
+  if (phe_is_bin == T) {
+    fam = "binomial"
+  }
+  print.noquote(paste('target=',target,'is binary=',phe_is_bin,'dim(x)=',paste(dim(x),collapse=','),'length(y)=',length(y),'force=',forcedin,'fam=',fam))
+  standardize = do_standard
+  p = try({larsres = glmnet(x,y,family=fam,standardize=standardize,maxit=10000,alpha=alpha,penalty.factor=penalty) },T)
+  if (class(p) == "try-error")
+  {
+    print(paste('ERROR: unable to run glmnet for target',target,'error=',p))
+    sink()
+    return(NA)
+  }
+
+  mt = paste('Glmnet fraction deviance for',target)
+  outpdf = paste(target,'glmnetPath.pdf',sep='_')
+  pdf(outpdf)
+  plot(larsres,main=mt,label=T)
+  grid()
+  dev.off()
+
+  outpdf = paste(target,'glmnetDeviance.pdf',sep='_')
+
+  mt2 = paste('Glmnet lambda for',target)
+
+  pdf(outpdf)
+  plot(larsres,xvar="lambda",main=mt2,label=T)
+  grid()
+  dev.off()
+
+  larscv = NA
+  if (fam=="binomial") {
+    tmain = paste(target,'AUC')
+    outpdf = paste(target,'glmnetCV_AUC.pdf',sep='_')
+    p = try({larscv = ross.cv.glmnet(x=x,y=y,family=fam,type.measure='auc')},T)
+  } else {
+    tmain = paste(target,'CV MSE')
+    outpdf = paste(target,'glmnetCV_MSE.pdf',sep='_')
+    p = try({larscv = ross.cv.glmnet(x=x,y=y,family=fam,type.measure='mse')},T)
+  }
+  if (class(p) == "try-error")
+  {
+    print(paste('ERROR: unable to run cross validation for target',target,'error=',p))
+    sink()
+    return(NA)
+  }
+
+  pdf(outpdf)
+  plot(larscv,main=tmain)
+  grid()
+  dev.off()
+
+  lse = larscv\$cvhits.1se
+  lmin = larscv\$cvhits.min
+  tot = lse + lmin
+  allhits = data.frame(pred=colnames(x),hits_lambda_1se = lse,hits_lambda_min = lmin)
+  nzhits = allhits[which(tot != 0),]
+  message('Total hit count for each predictor over all CV models (excluding zero count predictors)')
+  print.noquote(nzhits)
+  out_nz_file = paste(target,'cross_validation_model_counts.xls',sep='_')
+  write.table(nzhits,out_nz_file,quote=FALSE, sep="\t",row.names=F)
+
+  ipenalty = c(0,penalty)
+  if (optLambda == 'lambda.min') {
+    best_lambda = larscv\$lambda.min
+    bestpred = as.matrix(coef(larscv, s = "lambda.min"))
+  } else {
+    best_lambda = larscv\$lambda.1se
+    bestpred = as.matrix(coef(larscv, s = "lambda.1se"))
+  }
+  inmodel = which(bestpred != 0)
+  coefs = bestpred[inmodel,1]
+  preds = rownames(bestpred)[inmodel]
+  iforced = ipenalty[inmodel]
+  forced = ! as.logical(iforced)
+  names(coefs) = preds
+  ncoef = length(coefs) - 1
+  if (out_pred==T && fam=="binomial")
+  {
+    print.noquote(paste('Predicting',target,'probabilities from binomial glmnet at alpha',alpha,'and lambda',best_lambda))
+    bestpred = predict.glmnet(larsres,s=best_lambda,newx=x,type="response")
+    bestpred = exp(bestpred)/(1+exp(bestpred))
+    pred = data.frame(id=id,y=y,predp=as.vector(bestpred), best_lambda=best_lambda)
+    write.table(pred,out_pred_file,quote=FALSE, sep="\t",row.names=F)
+  }
+  if (debugOn) {cat(indx,'best_lambda=',best_lambda,'saving',fam,'respreds=',names(coefs),'as predictors of',target,'coefs=',coefs,'\n')}
+  res = try(data.frame(i=indx,pred=target,regulator=names(coefs),coef=coefs,forced_in=forced,glmnet_model=fam,ncoef=ncoef,
+     best_lambda=best_lambda,lambdaChoice=optLambda,alpha=alpha),T)
+  if (class(res) == "try-error") {
+    sink()
+    return(NA) }
+  print.noquote(res)
+  sink()
+  return(res)
+}
+
+
+dolasso_generic = function(predvars=NA,depvars=NA,debugOn=T,maxsteps=100, alpha=0.9,nfold=10,xcolnames=c(),ycolnames=c(),optLambda='minLambda', out_pred_file=NA,
+                           descr="describe me",do_standard=F,defaultFam="gaussian",penalty=c(),out_pred=F,cox_id=c(),mdsplots=F,xfilt=0.95)
+{
+  logf = file("rglasso.log", open = "a")
+  sink(logf,type = c("output", "message"))
+  xdat = predvars
+  xm = data.matrix(xdat)
+  res = NULL
+  id = cox_id
+  depnames = ycolnames
+  ndep = length(depnames)
+  if (mdsplots==T) {
+    outpdfname = 'rglasso_x_in_sample_space_MDS.pdf'
+    p = try({ mdsPlot(xm,'measurements in sample space',groups=NA,outpdfname=outpdfname,transpose=T) },T)
+    if (class(p) == "try-error")
+    {
+      print.noquote(paste('Unable to produce predictors in sample space mds plot. Error:',p))
+    }
+    outpdfname = 'rglasso_samples_in_x_space_MDS.pdf'
+    p = try({mdsPlot(xm,'samples in measurement space',groups=NA,outpdfname=outpdfname,transpose=F) },T)
+    if (class(p) == "try-error")
+    {
+      print.noquote(paste('Unable to produce samples in measurement space mds plot. Error:',p))
+    }
+  }
+  ndat = nrow(xm)
+  cfracs = colSums(! is.na(xm))/ndat
+  keepme = (cfracs >= xfilt)
+  print.noquote(paste('Removing', sum(! keepme), 'xvars with more than',xfilt,'fraction missing'))
+  vars = apply(xm,2,var,na.rm=T)
+  xm = xm[,keepme]
+  for (i in c(1:max(1,ndep)))   {
+    target = depnames[i]
+    if (length(target) < 1) { target='y' }
+    if (i %% 100 == 0) { cat(i,target,'\n') }
+    if (ndep <= 1) {
+      y=depvars
+    } else {
+      y = depvars[,i]
+    }
+    if (fam == "binomial") {y = as.factor(y)}
+    x = xm
+    id = cox_id
+    if (fam != "cox") {
+         ok = complete.cases(x,y)
+         if (sum(! ok) > 0) {
+            message(paste('@@@ Removing',sum(! ok),'cases with missing y of',length(y),'@@@'))
+            y = y[(ok)]
+            x = x[(ok),]
+            id = id[(ok)]
+           }
+    }
+    ok = complete.cases(y)
+    if (sum(ok) == 0 ) {
+      print(paste("No complete cases found for",target,"in input x dim =",paste(dim(xm),collapse=','),"length y=",length(y)))
+    } else {
+      if (i == 1) { outpred = out_pred_file
+      } else {
+        outpred = paste(target,'predicted_output.xls')
+      }
+      regres = do_lasso(x=x,y=y,do_standard=do_standard,debugOn=debugOn,defaultFam=defaultFam,optLambda=optLambda,out_pred_file=outpred,
+                        descr=descr,indx=i,target=target,alpha=alpha,nfold=nfold,penalty=penalty,out_pred=out_pred,yvarname=target,id=id,mdsplots=mdsplots)
+      if (! is.na(regres)) { res = rbind(res,regres) }
+    }
+  }
+  print.noquote('@@@ Results preview:')
+  print.noquote(res,digits=5)
+  sink()
+  return(res)
+}
+
+
+corPlot=function(xdat=c(),main='main title',is_raw=T)
+{
+  library(pheatmap)
+  library(gplots)
+  if (is_raw) {
+    cxdat = cor(xdat,method="spearman",use="pairwise.complete.obs")
+  } else {
+    cxdat=xdat
+  }
+  xro = nrow(cxdat)
+  if (xro > 1000) stop("Too many rows for heatmap, who can read?!")
+  fontsize_col = 5.0
+  pheatmap(cxdat, main=main, show_colnames = F, width=30, height=30,
+           fontsize_row=fontsize_col, border_color=NA)
+}
+
+
+runTest = function(n=10)
+{
+  set.seed (NULL)
+  Y = data.frame(y1=runif (n),y2=runif(n))
+  Xv <- runif(n*n)
+  X <- matrix(Xv, nrow = n, ncol = n)
+
+  mydf <- data.frame(Y, X)
+
+  regres_out = dolasso_generic(predvars=X,depvars=Y,debugOn=T,p.cutoff = 0.05,maxsteps=10000,nfold=10,
+                               descr='randomdata',do_standard=do_standard,defaultFam="gaussian",alpha=0.05)
+  return(regres_out)
+}
+]]>
+options(width=512)
+options(digits=5)
+alpha = $alpha
+nfold = $nfold
+optLambda = "$optLambda"
+Out_Dir = "$html_file.files_path"
+Input =  "$input1"
+indat = read.table(Input,head=T,sep='\t')
+datcols = colnames(indat)
+myTitle = "$title"
+outtab = "$model_file"
+do_standard = as.logical("$do_standard")
+mdsplots = as.logical("$mdsplots")
+fam = "$model.fam"
+xvar_cols_in = "$xvar_cols"
+force_xvar_cols_in = "$force_xvar_cols"
+xvar_cols = as.numeric(strsplit(xvar_cols_in,",")[[1]])
+force_xvar_cols = c()
+penalties = rep(1,length(datcols))
+forced_in = NA
+
+logxform = "$logxform_cols"
+if (logxform != "None") {
+    logxform_cols = as.numeric(strsplit(logxform,",")[[1]])
+    if (length(logxform_cols) > 0) {
+         small = 1e-10
+         sset = indat[,logxform_cols]
+         zeros = which(sset==0,arr.ind=T)
+         nz = nrow(zeros)
+         if (nz &gt; 0) {
+             message(paste('Log transforming encountered',nz,'zeros - added 1e-10'))
+             sset[zeros] = sset[zeros] + small
+             lset = log(sset)
+             indat[,logxform_cols] = lset
+             }
+         }
+}
+if (force_xvar_cols_in != "None")
+{
+  force_xvar_cols = as.numeric(strsplit(force_xvar_cols_in,",")[[1]])
+  allx = c(xvar_cols,force_xvar_cols)
+  xvar_cols = unique(allx)
+  xvar_cols = xvar_cols[order(xvar_cols)]
+  penalties[force_xvar_cols] = 0
+}
+penalty = penalties[xvar_cols]
+forcedin = paste(datcols[which(penalties == 0)],collapse=',')
+cox_id_col = NA
+cox_id = NA
+
+message(paste('@@@ Using alpha =',alpha,'for all models'))
+x = indat[,xvar_cols]
+nx = nrow(x)
+cx = ncol(x)
+message(paste('@@@@ Input has',nx,'samples and',cx,'predictors'))
+if (cx > nx) {
+message('@@@ WARNING: Models will have more variables than cases so glmnet will likely return one of many possible solutions! Please DO NOT expect reliable results - glmnet is clever but not magical @@@')
+}
+
+xcolnames = datcols[xvar_cols]
+
+if (file.exists(Out_Dir) == F) dir.create(Out_Dir)
+out_full = F
+out_full_file = NA
+out_pred_file = ""
+out_pred = as.logical("$model.output_pred")
+
+#if $model.fam == "binomial" or $model.fam == "cox":
+   cox_id_col = $model.cox_id
+   cox_id = indat[,cox_id_col]
+   if (out_pred == T) {
+     out_pred_file="$output_pred_file"
+     rownames(x) = cox_id
+     }
+#end if
+#if $model.fam == "cox":
+  cox_time = $model.cox_time
+  cox_status = $model.cox_status
+  out_full = as.logical("$model.output_full")
+  if (out_full == T) { out_full_file="$output_full_file" }
+  yvar_cols = c(cox_time,cox_status)
+  ycolnames = c('time','status')
+  istat = as.double(indat[,cox_status])
+  itime = as.double(indat[,cox_time])
+  predict_at = quantile(itime)
+  if ("$model.predict_at" &gt; "")
+  {
+      pa = "$model.predict_at"
+      predict_at = as.numeric(strsplit(pa,",")[[1]])
+  }
+  y = data.frame(time = itime, status = istat)
+  ustat = unique(istat)
+  if ((length(ustat) != 2) | (! 1 %in% ustat ) | (! 0 %in% ustat))
+  {
+   print.noquote(paste('INPUT ERROR: status must have 0 (censored) or 1 (event) but found',paste(ustat,collapse=',') ))
+   quit(save='no',status=1)
+  }
+  y = as.matrix(y)
+  x = as.matrix(x)
+  print.noquote(paste('@@@ Cox model will predict yvar=',datcols[cox_status],'using cols=',paste(xcolnames,collapse=','),'n preds=',length(xcolnames),
+    'forced in=',forcedin))
+  regres_out = dolasso_cox(x=x,y=y,debugOn=F,maxsteps=10000,nfold=nfold,xcolnames=xcolnames,ycolnames=ycolnames,optLambda=optLambda,out_full=out_full,out_full_file=out_full_file,
+       out_pred=out_pred,out_pred_file=out_pred_file,cox_id=cox_id,descr=myTitle,do_standard=do_standard,alpha=alpha,penalty=penalty,predict_at=predict_at,mdsplots=mdsplots)
+#else:
+    yvar_cols = "$model.yvar_cols"
+    yvar_cols = as.numeric(strsplit(yvar_cols,",")[[1]])
+    ycolnames = datcols[yvar_cols]
+    print.noquote(paste('@@@',fam,'model will predict yvar=',paste(ycolnames,collapse=','),'using cols=',paste(xcolnames,collapse=','),'n preds=',length(xcolnames),
+    'forced in=',forcedin))
+    y = data.matrix(indat[,yvar_cols])
+    print.noquote(paste('Model will use',fam,'link function to predict yvar=',paste(ycolnames,collapse=','),'n preds=',length(xcolnames),'forced in=',forcedin))
+    regres_out = dolasso_generic(predvars=x,depvars=y,debugOn=F, maxsteps=10000,nfold=nfold,xcolnames=xcolnames,ycolnames=ycolnames,optLambda=optLambda,out_pred_file=out_pred_file,
+                             descr=myTitle,do_standard=do_standard,defaultFam=fam,alpha=alpha,penalty=penalty,out_pred=out_pred,cox_id=cox_id,mdsplots=mdsplots)
+#end if
+
+write.table(format(regres_out,digits=5),outtab,quote=FALSE, sep="\t",row.names=F)
+print.noquote('@@@ SessionInfo for this R session:')
+sessionInfo()
+warnings()
+
+</configfile>
+</configfiles>
+  <inputs>
+     <param name="title" type="text" value="lasso test" label="Title for job outputs" help="Typing a short, meaningful text here will help remind you (and explain to others) what the outputs represent">
+      <sanitizer invalid_char="">
+        <valid initial="string.letters,string.digits"><add value="_" /> </valid>
+      </sanitizer>
+    </param>
+    <param name="input1"  type="data" format="tabular" label="Select an input tabular text file from your history. Rows represent samples; Columns are measured phenotypes"
+    multiple='False' optional="False" help="Tabular text data with samples as rows, phenotypes as columns with a header row of column identifiers" />
+    <param name="xvar_cols" label="Select columns containing numeric variables to use as predictor (x) variables" type="data_column" data_ref="input1" numerical="False"
+         multiple="True" use_header_names="True" force_select="True" />
+    <param name="force_xvar_cols" label="Select numeric columns containing variables ALWAYS included as predictors in cross validation" type="data_column" data_ref="input1" numerical="False"
+         multiple="True" use_header_names="True" force_select="False"/>
+    <conditional name="model">
+        <param name="fam" type="select" label="GLM Link function for models"
+             help="Binary dependant variables will automatically be set to Binomial no matter what this is set to">
+                <option value="gaussian" selected="true">Gaussian - continuous dependent (y)</option>
+                <option value="binomial">Binomial dependent variables</option>
+                <option value="poisson">Poisson (eg counts)</option>
+                <option value="cox">Cox models - require special setup for y variables - see below</option>
+        </param>
+        <when value="gaussian">
+            <param name="yvar_cols" label="Select numeric columns containing variables to use as the dependent (y) in elasticnet" type="data_column" data_ref="input1" numerical="False"
+             multiple="True" use_header_names="True"  help = "If multiple, each will be modelled against all the x variables and reported separately." force_select="True"/>
+            <param name="output_full" type="hidden" value='F' />
+            <param name="output_pred" type="hidden" value='F' />
+              <param name="cox_id" label="Select column containing a unique sample identifier"
+                 help = "Only really needed for output sample specific predicted values downstream."
+                 type="data_column" data_ref="input1" numerical="False" force_select="True"
+                 multiple="False" use_header_names="True" />
+      </when>
+        <when value="binomial">
+            <param name="yvar_cols" label="Select numeric columns containing variables to use as the dependent (y) in elasticnet" type="data_column" data_ref="input1" numerical="False"
+             multiple="True" use_header_names="True"  help = "If multiple, each will be modelled against all the x variables and reported separately." force_select="True"/>
+             <param name="output_full" type="hidden" value='F' />
+             <param name="output_pred" type="select" label="Create a tabular output with predicted values for each subject from the optimal model for (eg) NRI estimates" >
+                <option value="F" selected="true">No predicted value output file</option>
+                <option value="T">Create a predicted value output file</option>
+             </param>
+              <param name="cox_id" label="Select column containing a unique sample identifier"
+                 help = "Only really needed for output sample specific predicted values downstream."
+                 type="data_column" data_ref="input1" numerical="False" force_select="True"
+                 multiple="False" use_header_names="True" />
+             <param name="predict_at" type="hidden" value='' />
+
+        </when>
+        <when value="poisson">
+            <param name="yvar_cols" label="Select columns containing variables to use as the dependent (y) in elasticnet" type="data_column" data_ref="input1" numerical="True"
+             multiple="True" use_header_names="True"  help = "If multiple, each will be modelled against all the x variables and reported separately." force_select="True"/>
+             <param name="output_full" type="hidden" value='F' />
+             <param name="output_pred" type="hidden" value='F' />
+             <param name="predict_at" type="hidden" value='' />
+              <param name="cox_id" label="Select column containing a unique sample identifier"
+                 help = "Optional. Only really needed for output sample specific predicted values downstream. Free - enjoy"
+                 type="data_column" data_ref="input1" numerical="True" force_select="False"
+                 multiple="False" use_header_names="True" />
+        </when>
+        <when value="cox">
+             <param name="cox_time" label="Select column containing time under observation for Cox regression"
+                 type="data_column" data_ref="input1" numerical="True" force_select="True"
+                 multiple="False" use_header_names="True"  help = "This MUST contain a time period - eg continuous years or days to failure or right censoring"/>
+             <param name="cox_status" label="Select column containing status = 1 for outcome of interest at the end of the time under observation or 0 for right censoring"
+                 type="data_column" data_ref="input1" numerical="True" force_select="True"
+                 multiple="False" use_header_names="True"  help = "This MUST contain 1 for subjects who had an event at that time or 0 for a right censored observation"/>
+              <param name="cox_id" label="Select column containing a unique sample identifier"
+                 help = "Optional. Only really needed for output sample specific predicted values downstream. Free - enjoy"
+                 type="data_column" data_ref="input1" numerical="False" force_select="False"
+                 multiple="False" use_header_names="True" />
+             <param name="output_full" type="select" label="Create a tabular output with coefficients for all predictors" >
+                <option value="F" selected="true">No full model output file</option>
+                <option value="T">Create a full model output file</option>
+             </param>
+             <param name="output_pred" type="select" label="Create a tabular output with predicted values for each subject from the optimal model for (eg) NRI estimates" >
+                <option value="F" selected="true">No predicted value output file</option>
+                <option value="T">Create a predicted value output file</option>
+             </param>
+             <param name="predict_at"  type="text" value='' label="Provide a comma separated list of times to make a prediction for each subject"
+                 optional="True" help="Default (blank) will return predictions at 0%,25%,50%,75%,100% of the observed times which should be informative" />
+
+        </when>
+    </conditional>
+    <param name="optLambda" type="select" label="Value to use when reporting optimal model and coefficients" help="minLambda will have more predictors - 1SDLambda will be more parsimonious">
+            <option value="lambda.1se" selected="true">Lambda + 1 SE of min MSE or AUC (fewer coefficients - more false negatives)</option>
+            <option value="lambda.min">Lambda at min MSE or max AUC (more coefficients - more false positives)</option>
+    </param>
+    <param name="logxform_cols"  optional="True" label="Select numeric columns to be log transformed before use as predictors or dependent variables" type="data_column"
+        data_ref="input1" numerical="True" multiple="True" use_header_names="True" help = "The wisdom of doing this depends entirely on your predictors - eg can help diminish long-tailed outlier influence"
+        force_select="False"/>
+    <param name="do_standard" type="select" label="Standardise x vars"
+         help="If all measurements on same scale, may not be needed. Coefficients are always returned on the original scale.">
+            <option value="False" selected="true">No standardisation of predictors</option>l
+            <option value="True">Standardise predictors before model</option>
+    </param>
+    <param name="mdsplots" type="select" label="Generate MDS plots of samples in measurement space and measurements in sample space" >
+            <option value="False" selected="true">No MDS plots</option>l
+            <option value="True">Yes create MDS plots</option>
+    </param>
+    <param name="alpha" type="float" value="0.95" min="0.01" max="1.0" label="Alpha - see glmnet docs. 1 for pure lasso. 0.0 for pure ridge regression"
+     help="Default 0.95 allows lasso to cope better with expected predictor collinearity. Use (eg) 0.5 for hybrid regularised regression or (eg) 0.025 for ridge regression"/>
+    <param name="nfold" type="integer" value="10" label="Number of folds for internal cross validation"
+     help="Default of 10 is usually ok"/>
+  </inputs>
+  <outputs>
+    <data format="html" name="html_file" label="${title}.html"/>
+    <data format="tabular" name="model_file" label="${title}_modelres.xls"/>
+    <data format="tabular" name="output_full_file" label="${title}_full_cox_model.xls">
+        <filter>model['output_full'] == 'T'</filter>
+    </data>
+    <data format="tabular" name="output_pred_file" label="${title}_predicted_from_model.xls">
+        <filter>model['output_pred'] == 'T'</filter>
+    </data>
+  </outputs>
+ <tests>
+    <test>
+     <param name='input1' value='cox_test.xls' ftype='tabular' />
+     <param name='treatment_name' value='case' />
+     <param name='title' value='Cox glmnet test' />
+     <param name='nfold' value='10' />
+     <param name='logxform_cols' value='' />
+     <param name='alpha' value='0.95' />
+     <param name='do_standard' value="True" />
+     <param name='cox_time' value='1' />
+     <param name='cox_status' value='2' />
+     <param name='cox_id' value='1' />
+     <param name='predict_at' value='' />
+     <param name='fam' value='cox' />
+     <param name='yvar_cols' value='' />
+     <param name='xvar_cols' value='3,4,5' />
+     <param name='force_xvar_cols' value='3' />
+     <param name='output_full' value='F' />
+     <param name='output_pred' value='F' />
+     <output name='model_file' file='coxlassotest_modelres.xls'>
+          <assert_contents>
+                <has_text text="rhubarb" />
+                <has_text text="TRUE" />
+                <!-- &#009; is XML escape code for tab -->
+                <!-- has_line line="regulator&#009;partial_likelihood&#009;forced_in&#009;glmnet_model&#009;best_lambda" / -->
+                <has_line line="regulator&#009;partial_likelihood&#009;forced_in&#009;glmnet_model&#009;best_lambda&#009;lambdaChoice&#009;alpha" />
+                <has_n_columns n="7" />
+           </assert_contents>
+     </output>
+     <output name='html_file' file='coxlassotest.html'  compare='diff' lines_diff='16' />
+    </test>
+</tests>
+<help>
+
+**Before you start**
+
+Please read the glmnet documentation @ glmnet_
+
+This Galaxy wrapper merely exposes that code and the glmnet_ documentation is essential reading
+before getting useful results here.
+
+**What it does**
+
+From documentation at glmnet_ ::
+
+ Glmnet is a package that fits a generalized linear model via penalized maximum likelihood.
+ The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda.
+ The algorithm is extremely fast, and can exploit sparsity in the input matrix x.
+ It fits linear, logistic and multinomial, poisson, and Cox regression models.
+ A variety of predictions can be made from the fitted models.
+
+Internal cross validation is used to optimise the choice of lambda based on CV AUC for logistic (binomial outcome) models, or CV mse for gaussian.
+
+**Warning about the tyrany of dimensionality**
+
+Yes, this package will select 'optimal' models even when you (optimistically) supply more predictors than you have cases.
+The model returned is unlikely to represent the only informative regularisation path through your data - if you run repeatedly with
+exactly the same settings, you will probably see many different models being selected.
+This is not a software bug - the real problem is that you just don't have enough information in your data.
+
+Sufficiently big jobs will take a while (eg each lasso regression with 20k features on 1k samples takes about 2-3 minutes on our aged cluster)
+
+**Input**
+
+Assuming you have more measurements than samples, you supply data as a tabular text file where each row is a sample and columns
+are variables. You specify which columns are dependent (predictors) and which are observations for each sample. Each of multiple
+dependent variable columns will be run and reported independently. Predictors can be forced in to the model.
+
+**Output**
+
+For each selected dependent regression variable, a brief report of the model coefficients predicted at the
+'optimal' nfold CV value of lambda.
+
+**Predicted event probabilities for Cox and Logistic models**
+
+If you want to compare (eg) two competing clinical predictions, there's a companion generic NRI tool
+for predicted event probabilities. Estimates dozens of measures of improvement in prediction. Currently only works for identical id subjects
+but can probably be extended to independent sample predictions.
+
+Given a model, we can generate a predicted p (for status 1) in binomial or cox frameworks so models can be evaluated in terms of NRI.
+Of course, estimates are likely substantially inflated over 'real world' performance by being estimated from the same sample - but you probably
+already knew that since you were smart enough to reach this far down into the on screen help. The author salutes you, intrepid reader!
+
+It may seem an odd thing to do, but we can predict p for an event for each subject from our original data, given a parsimonious model. Doing
+this for two separate models (eg, forcing in an additional known explanatory measurement to the new model) allows comparison of the two models
+predicted status for each subject, or the same model in independent populations to see how badly it does
+
+**Attributions**
+
+glmnet_ is the R package exposed by this Galaxy tool.
+
+Galaxy_ (that's what you are using right now!) for gluing everything together
+
+Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
+licensed to you under the LGPL_ like other rgenetics artefacts
+
+.. _LGPL: http://www.gnu.org/copyleft/lesser.html
+.. _glmnet: http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
+.. _Galaxy: http://getgalaxy.org
+</help>
+
+<citations>
+    <citation type="bibtex">
+@Article{Friedman2010, title = {Regularization Paths for Generalized Linear Models via Coordinate Descent},
+    author = {Jerome Friedman and Trevor Hastie and Robert Tibshirani},
+    journal = {Journal of Statistical Software},
+    year = {2010},
+    volume = {33},
+    number = {1},
+    pages = {1--22},
+    url = {http://www.jstatsoft.org/v33/i01/}
+  }
+    </citation>
+    <citation type="doi">
+10.1093/bioinformatics/bts573
+    </citation>
+</citations>
+</tool>
Binary file test-data/cox_coxlassotest_glmnet_cvdeviance.pdf has changed
Binary file test-data/cox_coxlassotest_glmnetdev.pdf has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/cox_test.xls	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,502 @@
+time	status	rhubarb	vegemite	apple
+575.966708	0	452.405468	30.339584	32286.089057
+1539.245319	1	329.689929	30.603839	15735.863202
+2072.798422	0	534.379263	32.474983	22639.136685
+1638.450154	0	362.522161	30.925996	31108.364370
+1771.625630	0	417.167751	31.444652	31317.491931
+4413.484706	1	459.947526	30.069033	11232.037882
+1519.376431	1	576.868414	30.102709	16539.948172
+4805.620290	0	554.756164	30.685550	9979.125726
+657.497124	0	439.481951	32.305768	22301.057122
+181.498205	1	581.498091	32.549519	10499.737992
+1630.552909	0	580.670671	30.825057	22321.821037
+2285.043061	1	588.034529	32.799742	8067.710675
+3697.405336	0	400.195630	31.826099	20975.730587
+3821.226480	0	561.466202	32.333230	17887.547850
+4810.837196	0	447.004938	32.547717	25383.925946
+3195.877681	1	482.169788	31.420740	27659.409774
+4556.750833	1	415.144072	31.960725	18401.138992
+3797.192061	1	484.492359	30.789882	7431.214452
+3734.484446	1	587.339066	32.052766	29443.923798
+567.665985	1	377.599777	31.203617	30148.076752
+2551.367122	0	447.623689	31.795708	15922.972458
+3.724234	1	534.080187	31.175131	8259.786167
+3528.906130	0	471.293653	31.225006	18307.543198
+3649.459162	1	443.804109	32.390564	9720.974163
+1490.640766	1	456.837379	32.099378	15292.782705
+4023.629633	1	443.869307	30.022985	23145.513801
+1389.288557	0	497.850711	30.361120	28757.227200
+535.427950	1	437.634304	32.307966	18289.733136
+3115.819953	0	587.593182	31.317353	21533.733397
+1561.895566	1	472.250365	31.550546	8724.067134
+2579.785003	0	331.955830	32.992176	12105.988070
+1592.819387	0	361.242026	31.011367	12823.339723
+4473.715814	0	334.539193	30.448049	9621.600487
+4328.198133	0	537.782739	32.683122	19090.292579
+3761.244687	1	392.916387	32.665889	22119.375302
+4638.730675	0	514.168146	30.548414	20651.266975
+1531.289211	0	451.404672	32.437627	21748.461852
+3844.140593	0	427.404840	32.894070	25824.198908
+4542.766339	0	366.992470	30.814372	6090.765585
+3296.236419	0	575.910564	32.509193	4050.864668
+710.915095	0	395.062092	32.940952	9086.464980
+3211.769396	0	428.608771	30.918481	29996.819084
+4448.442217	0	300.153203	31.160941	8735.458385
+4215.329607	0	504.064526	32.040819	29036.000397
+3249.725224	0	489.538009	32.863547	27520.919952
+3388.033079	0	485.938597	30.920035	20395.348731
+1465.239279	0	435.641977	30.193093	20469.748911
+2022.519649	0	362.011214	32.756787	18367.094394
+1474.662644	0	448.727985	31.194883	18456.157990
+2680.178585	0	553.521680	32.339108	17386.094437
+254.953131	1	467.930054	32.705913	28823.817908
+2080.749522	0	387.588403	30.520279	3389.418182
+4609.398123	1	471.568096	31.101077	27574.777543
+2506.254687	1	466.233702	32.928613	24693.847389
+1418.686322	0	519.402535	32.685931	9055.300824
+1716.501599	0	305.671024	31.453871	25382.505028
+2080.668376	0	589.514396	31.143248	24546.670311
+4051.441999	1	431.028785	30.854820	32291.736106
+221.739141	1	435.123612	30.465214	19077.175842
+3945.564918	0	559.566964	32.871624	18320.616591
+3543.190633	1	548.960006	30.269711	6259.113819
+4141.263169	1	418.013926	30.159280	12806.181141
+4613.643735	1	467.593153	30.584036	28998.377681
+2526.696757	1	442.602416	31.075723	24392.589804
+661.056610	0	306.186743	30.071900	4931.492293
+420.059232	0	557.043309	30.889234	30410.871000
+3777.621646	1	564.397202	30.810439	25359.485010
+4210.010862	0	541.943504	31.109403	18240.759045
+2251.752128	1	442.108369	31.308836	14136.141189
+4037.391365	1	467.892619	32.089289	14540.468274
+2478.012769	0	305.600832	30.653583	7117.580065
+2435.693015	0	551.918277	30.355254	29969.743529
+3816.690227	0	314.516061	31.511033	9880.067119
+531.400047	0	565.141705	30.722177	11252.478408
+4367.861436	0	421.500739	31.696812	16879.486148
+634.857316	1	476.587731	30.741441	31351.695315
+2757.953233	1	484.171370	31.510266	7767.961089
+676.813083	0	412.948756	30.174301	11123.425270
+3672.369695	0	374.771725	30.531392	32349.940422
+2572.842389	0	554.137199	32.777709	12727.962812
+4960.699040	0	560.164589	30.206776	3453.492367
+4316.475328	1	484.168551	32.069106	31984.273406
+4015.881070	1	400.274241	30.658886	11783.352436
+3052.451190	1	398.216589	30.358316	27928.803920
+1398.823206	0	446.521178	30.185715	31193.500034
+3922.909840	1	575.609185	32.724842	10233.363838
+182.803149	0	370.875903	30.856525	23954.116536
+2632.176915	1	426.948756	30.641145	30860.455084
+1060.390433	0	300.347626	31.143117	23615.898639
+3178.728283	1	514.261332	31.356224	26944.147061
+763.218442	1	463.367562	31.274306	7509.665226
+953.708474	0	384.301310	31.065789	15102.331493
+4434.527995	1	431.967331	32.369140	7177.785265
+623.914857	0	495.381873	32.915097	22739.985454
+3157.386533	1	515.293513	32.210421	31073.191185
+521.293142	0	593.449301	30.668076	29606.157493
+2845.587324	1	367.180408	32.424788	7052.350189
+4832.119270	1	465.679571	30.019029	5249.534096
+2856.445302	1	591.090965	31.133381	32498.377584
+2572.527257	1	409.021421	31.885768	13743.016360
+1413.194580	1	330.844512	32.740409	5441.606816
+2918.271731	0	304.169439	31.256918	22384.990257
+1674.024061	1	589.100300	32.763039	13305.351548
+2808.138084	0	491.357574	31.150814	17202.472869
+1424.663181	0	359.990029	31.343898	28564.024266
+2718.446177	1	580.778432	31.842978	29231.311831
+3735.730841	0	573.549637	30.079704	31952.172593
+4641.585855	0	365.172295	32.894223	17289.384320
+4071.637795	0	505.251583	32.472570	9633.518042
+471.788564	1	322.257982	32.546866	30076.426907
+1266.346159	1	335.749836	31.646670	32477.736291
+2695.370600	1	509.475837	31.947731	22351.940960
+3631.475811	0	584.575140	30.366829	13700.704821
+488.174184	0	522.383785	30.637536	29035.941989
+2645.805895	1	390.848623	31.639290	3004.701971
+4037.703358	1	425.444485	32.775358	28720.752294
+2196.610999	1	547.619331	32.640598	29108.134173
+1081.264261	1	350.044271	32.021783	19844.288986
+1074.305164	1	497.881588	32.048148	16325.089356
+1643.851420	0	372.156064	30.815571	12924.845649
+4919.287039	0	470.345027	31.043515	6953.198088
+3961.891671	1	353.750322	32.386195	10074.185995
+1643.427847	0	521.758887	31.784944	10303.308946
+2714.177818	0	363.519932	31.954710	4089.970927
+1958.737870	0	372.752456	32.778447	25735.088968
+72.430537	1	374.015311	30.406160	3519.910494
+666.824775	0	443.814245	31.382885	32222.429084
+179.203304	0	339.335011	30.911475	29294.393947
+3193.179459	1	329.239965	32.270432	7539.157039
+1405.955780	1	575.062041	31.769778	26056.208652
+4378.622335	1	583.779711	30.280724	12958.062814
+4933.985803	0	474.998284	30.835755	8298.116085
+479.970673	0	311.469610	31.110600	16498.771798
+194.917302	1	533.735116	32.682195	17363.293404
+3126.230367	1	568.043474	32.209623	22525.398240
+3605.775657	0	519.068951	30.750083	21588.128190
+68.236883	1	316.956971	32.735304	5303.699685
+2956.632516	1	359.835070	31.735527	26701.676218
+1273.924283	1	346.804469	31.185254	29977.854210
+1530.707021	1	568.442488	31.510433	20716.251168
+3847.696838	1	487.304670	32.242322	5276.023316
+3121.510941	0	518.612631	30.448810	10702.449428
+2693.401144	1	533.008711	32.964097	31390.744850
+1774.742268	1	588.145493	30.487710	21800.531169
+2216.272824	0	467.093275	31.533770	7991.454914
+1526.314833	0	433.703579	32.809884	11209.353005
+2089.304275	0	321.084472	31.021678	27856.425967
+3046.990363	1	460.307711	32.631130	7182.074497
+1317.038946	0	593.108863	31.275244	26560.416891
+1352.101840	0	306.529955	30.979817	21571.506540
+3163.866962	0	304.262526	30.303302	24717.381911
+3417.487105	1	367.150160	31.345893	13987.483107
+4582.950578	0	478.091198	32.280854	23336.546777
+1183.214096	1	435.761798	31.182880	32631.545653
+549.532217	0	436.107384	32.534391	23409.562965
+4018.079504	1	514.150908	32.582211	11007.862101
+4537.862661	0	474.720396	31.380999	6160.620917
+2023.882772	1	576.659734	31.873967	24564.400593
+301.339657	0	525.192309	30.612934	19844.142010
+989.521636	0	323.610331	30.471812	6456.387005
+3647.414661	1	353.160773	30.687803	20893.860619
+184.390450	0	367.556798	32.894773	7004.911101
+2851.709060	1	420.820133	32.238140	4715.183972
+3988.318894	0	352.860472	31.705620	18426.123706
+2244.796525	0	332.927674	31.617697	20768.384056
+726.779082	0	370.641547	32.668547	5629.086601
+2379.683675	1	566.970531	30.287987	26943.017249
+2039.968848	0	550.042019	31.203815	6686.226792
+949.545757	1	302.786734	30.845201	7393.079915
+2509.519553	1	378.264518	31.980310	16762.542739
+2949.998835	0	472.701800	32.896473	12708.457939
+3958.575946	1	402.750276	30.318068	10667.350272
+550.167142	0	394.589505	30.431805	32262.087079
+1462.278890	1	534.727448	31.514861	27759.667272
+2696.454522	1	535.656182	32.096399	32431.581354
+3756.029506	1	332.505291	32.486460	26887.712404
+1948.023625	1	470.099353	31.100519	31437.137850
+2008.758594	1	489.846790	31.656842	18513.611970
+889.052994	0	378.045215	30.360086	30999.351259
+956.860624	0	498.874188	31.238091	32986.760129
+1596.180150	1	468.477647	32.876509	10708.862352
+2044.623310	0	341.364451	30.831209	4377.873160
+1670.382802	0	344.655922	31.528413	25861.700033
+2751.419144	0	525.374048	31.427506	23893.998314
+1139.794772	0	510.822662	32.192052	27853.949410
+1951.275598	1	355.760660	30.362940	26312.111688
+3652.432308	0	330.985338	32.585428	25167.952966
+500.427055	1	453.806271	30.774837	16661.345691
+2884.409660	0	529.815414	31.683479	3317.970560
+2365.322179	0	540.382433	31.999929	29498.364669
+3853.672492	1	367.171163	32.671321	7512.370365
+938.719173	0	569.038125	31.387703	23444.121607
+3058.327259	1	411.675057	31.700811	28738.835254
+4215.442937	0	425.942827	31.617841	19505.555179
+1639.143130	1	310.802062	31.996376	24378.789768
+3015.816015	1	397.865213	30.774914	32208.055822
+1361.137094	1	314.093792	30.698064	21667.130306
+1900.651819	1	582.449408	30.643572	26755.743826
+2038.834435	1	359.535511	31.758170	26389.582514
+4217.395801	1	532.389233	32.367523	28128.901119
+4048.824843	1	415.408543	30.661216	6695.688224
+3278.940683	0	590.282168	31.148497	17706.150830
+2590.370816	1	467.475790	32.894899	31984.209283
+2961.953200	1	409.350826	30.412768	26800.587858
+757.305077	0	531.036597	32.692111	23056.009036
+4823.679979	0	547.031467	31.700254	4679.396986
+2159.887871	1	461.722894	31.554845	23118.215328
+1990.158592	0	436.583574	32.276433	22516.752446
+4010.528172	0	315.169873	31.546055	4521.472077
+527.527936	0	429.812828	32.161079	26933.467576
+2517.395024	1	442.643281	32.903345	11566.976782
+3973.530406	0	444.298671	30.860264	30738.467879
+909.115735	1	548.278268	31.969666	3061.067051
+1003.138129	0	599.492409	32.731826	5268.191640
+496.214281	1	525.539783	32.288968	18314.877509
+3321.884314	1	518.880235	31.593901	27585.403619
+531.060305	0	311.564795	30.660864	26630.390327
+1985.865186	0	468.954849	30.022861	7126.223629
+1075.080978	0	566.983564	32.548614	4189.576013
+2899.914447	0	501.981481	31.522821	3699.352956
+1209.686792	1	397.096875	30.589148	26885.709293
+1061.484419	0	399.802412	31.376845	21631.836258
+2341.148192	0	599.041273	32.705976	7273.381892
+2350.754927	1	578.118121	32.505017	16776.353449
+3715.290307	1	374.328239	31.642496	24018.734911
+353.266473	1	306.976330	30.935877	17228.695180
+739.123546	1	529.022431	30.659845	18290.776722
+465.537407	0	308.998940	31.824504	3898.463033
+3524.840397	1	385.275512	30.348328	6065.321632
+751.616003	0	322.281940	30.576017	20828.524508
+4989.405682	1	381.074571	30.437314	16844.697669
+488.563077	0	318.125000	31.138994	28854.306278
+4558.130890	0	479.058472	31.076337	3808.209751
+3644.754920	0	437.984557	30.038643	24302.584238
+4595.447449	0	323.287824	31.904699	24911.538572
+1064.168831	1	541.625023	30.168168	12380.733046
+4197.068049	0	418.764938	31.133507	14481.902057
+3593.303853	0	545.685419	30.904012	27860.611155
+3842.381434	0	596.665096	31.650039	32071.065698
+781.763222	0	544.786508	32.895055	4905.803177
+3941.386557	1	362.501808	32.489031	8386.976863
+4285.917626	1	373.105515	31.909823	18733.487831
+4152.435642	1	440.036083	30.439913	4669.690889
+2326.656610	0	409.061810	31.219523	17268.378337
+887.243489	1	458.991888	32.904742	32560.558550
+2383.154926	0	402.990252	31.501777	32165.195285
+1575.020117	1	567.576879	31.223480	11851.574021
+2681.793474	0	382.275765	30.672297	31505.220294
+3745.755933	1	524.831384	31.755858	20277.860327
+2310.372497	0	381.887619	32.549019	23884.208743
+1934.629896	0	430.992059	30.090286	16064.349955
+228.815046	1	510.344577	30.272399	13314.791074
+106.494754	0	421.895617	30.249703	6022.257615
+107.758807	1	352.048161	31.015999	27010.353099
+2366.497161	1	589.257754	32.599191	29060.870687
+3652.314844	1	325.392214	30.378902	9562.454775
+4628.382437	0	389.680904	30.488690	21333.408550
+3992.522719	1	460.945057	30.259246	21474.935828
+3116.879118	0	470.551054	30.384387	23511.934422
+3669.891947	1	468.454570	30.792238	6696.682439
+2455.615625	1	536.995869	30.130133	27385.537567
+334.254171	0	510.509005	31.195189	15166.910603
+2392.466005	1	503.464732	31.609503	28757.028622
+563.741633	0	535.281334	31.242527	11455.193241
+2683.204132	0	530.400221	30.122120	21995.611523
+116.891969	0	458.723324	30.381523	5852.247596
+2817.127744	1	547.927894	32.877328	22278.789600
+323.704077	0	432.630710	31.643437	8793.259513
+2223.194666	1	584.593612	31.798636	4232.455807
+4836.806252	0	328.278741	31.551587	28407.563886
+2302.391657	1	304.186017	30.683099	21760.214902
+1597.778913	1	593.734794	32.275770	26311.401980
+3231.228313	0	469.955959	31.155902	21789.637085
+4329.078171	1	326.299894	30.629070	28598.928501
+3004.531335	0	345.517768	31.874809	20075.187439
+3426.658667	0	407.558711	32.882949	32961.004750
+2942.293151	1	474.436479	30.681717	10297.918976
+2790.908728	1	372.634696	31.883438	18617.426989
+3645.736003	0	338.768900	30.271779	13340.959790
+4954.230936	0	475.204218	32.305344	31368.726270
+1374.169666	0	322.794825	32.054615	29507.251607
+952.311143	0	466.066676	31.283949	31527.207980
+1582.935333	1	430.497522	32.636945	6365.677867
+1574.488078	1	512.547475	32.000036	3214.800133
+3675.314941	0	420.357568	30.365188	24034.010725
+3737.900636	0	310.463467	32.944674	19212.098849
+453.453905	1	307.998144	31.734006	6696.312537
+180.430188	0	500.121289	31.647589	25439.918801
+2223.386978	0	342.168201	31.413275	10321.858985
+3347.152707	0	450.255234	32.419409	21979.139997
+2032.988552	1	359.268392	32.444386	4151.429949
+1855.874006	1	486.902129	32.194183	28734.066535
+576.472090	0	491.131111	30.250436	21183.624322
+2629.739140	1	490.880496	30.706030	20741.966223
+3234.449151	0	591.702238	31.565719	9467.501732
+4568.779861	0	391.821980	31.778473	12171.711242
+1369.135728	1	352.424832	32.501343	24914.054783
+1203.818730	1	453.408627	30.021814	9344.375802
+1328.193901	1	326.714975	31.957412	22506.010391
+3143.392191	0	488.722719	30.906428	20404.329854
+1516.300551	1	524.551137	30.783381	26784.582992
+4401.773609	1	490.129039	31.474209	27673.989380
+471.342147	0	345.653763	30.714091	27614.068357
+2846.556659	0	387.773914	32.101213	25758.358083
+3113.332960	0	340.017571	31.250862	8517.797718
+569.863929	1	507.285752	32.723247	7350.729977
+1351.433366	1	355.255156	31.629009	10035.728199
+2057.479962	0	504.044203	31.725231	14699.764489
+2029.207221	1	326.501058	31.883646	25956.067323
+4987.734533	0	391.140321	30.918262	15723.785267
+2728.957211	1	498.936107	32.017269	21531.521853
+2885.926679	0	458.513681	31.221876	23111.352960
+1214.796671	0	531.593343	32.409879	26260.051485
+4073.228494	1	563.045005	31.629048	5742.795393
+632.393708	1	428.087852	32.360714	20236.813182
+4548.671698	0	387.645357	30.048297	28095.140888
+735.589017	0	510.876342	30.202972	28887.002260
+2683.928468	1	352.751328	31.385745	3968.105767
+3761.692766	1	470.650685	31.713693	21645.943688
+3949.678238	0	572.913454	32.230970	18919.434641
+1695.346973	0	387.076598	32.045632	8265.498458
+4805.534106	0	322.040787	30.256378	20922.671974
+3834.130476	0	548.536590	30.581470	12530.815196
+3700.095266	0	434.154537	30.131024	28914.087338
+2083.132166	1	435.468758	31.961937	24155.150686
+2566.436697	1	455.368285	30.113525	23903.526223
+3372.416477	1	439.390127	32.380970	8312.312507
+3341.243804	1	496.573292	32.055384	9484.908468
+1289.638171	1	346.709851	31.116968	13853.905474
+441.798476	1	395.115019	32.820316	27178.509065
+3876.357092	1	501.568592	30.100469	3872.161975
+3082.204963	0	445.140351	31.403349	21141.060076
+1222.633709	1	510.019589	32.832816	12522.872061
+3257.092925	1	567.760441	30.935411	17780.698060
+4978.318869	0	488.434181	31.349966	20399.317688
+268.617967	0	563.410236	30.677835	13353.114481
+3668.370880	1	432.604476	31.336602	18298.862821
+1616.920156	1	528.362539	30.664065	18290.365790
+1582.470140	1	566.928554	31.829775	31526.762426
+1894.952274	0	576.611659	32.930078	5451.111476
+130.599064	1	357.672426	30.192175	5127.046275
+1658.869611	0	518.418202	30.222626	21787.150970
+1930.327624	0	539.744396	31.409771	11998.451350
+1360.478477	1	357.741711	32.358872	4894.722814
+2762.405397	1	498.202228	32.110196	20926.903902
+66.089100	0	525.721147	30.742496	28773.910408
+4617.260796	0	388.807122	31.052491	19010.672351
+4046.674710	1	363.050835	32.600458	8208.205191
+103.101768	0	401.874765	30.885852	29276.307064
+2870.170146	1	479.961929	31.997551	19841.555525
+1069.648823	1	598.655109	31.936390	10655.006702
+1988.650561	0	483.709224	31.937744	11014.379454
+2983.772162	0	328.380916	32.023817	8974.076899
+4534.002381	0	311.260565	30.136494	25947.551507
+3064.855784	1	369.080218	31.164070	29129.542680
+1746.878916	0	313.512424	30.992758	20731.078669
+4018.774695	1	497.866125	31.834090	3971.821700
+3742.871097	1	353.541863	30.115952	20815.885581
+2828.315773	1	454.655490	32.424599	26891.927439
+637.033003	1	424.553960	31.428681	20585.183759
+3087.856465	1	536.195443	31.597533	12661.823700
+604.873967	1	378.515493	30.925004	22439.100233
+3748.531033	1	515.115463	32.625710	6408.313067
+1558.535013	1	433.937532	32.380082	8383.657584
+2365.992186	0	409.216710	31.115409	32511.614098
+1183.022513	0	362.544664	30.959448	5065.906749
+3789.375438	0	595.724663	30.914010	20244.524890
+850.273991	1	387.136972	31.618840	5094.567581
+1231.544018	1	322.683917	31.457545	20767.599384
+1581.181089	1	305.296620	31.856051	17539.248499
+4880.147078	1	316.598007	31.317619	11086.097072
+4013.027211	0	485.648876	31.953258	30138.577997
+31.538821	0	486.966298	30.424936	3940.149283
+1735.735564	1	453.551097	30.972695	29273.785203
+4682.372724	1	426.064369	30.915967	29848.714453
+1419.673303	1	410.849400	31.957769	20423.937410
+4735.693777	0	331.994083	30.314568	21510.813276
+796.562868	0	502.136561	31.584336	14765.778268
+2637.389588	1	550.253910	31.759164	29206.835372
+1596.336472	0	367.679269	32.352327	5586.166324
+4673.788569	0	380.575280	32.897426	12723.911545
+2339.522676	0	405.444884	30.501805	20468.692308
+2935.072522	0	458.797029	30.585909	9955.177397
+2865.796979	0	497.765242	31.556959	27770.325805
+1032.502528	1	390.204545	31.050812	26330.543896
+1571.491134	1	454.897576	32.799730	4600.369582
+453.244362	0	513.834562	31.693168	18448.030313
+2566.490430	1	370.231825	31.371622	3530.831525
+2470.800433	1	506.755104	32.707049	15365.573438
+1674.578908	1	484.850818	31.657126	31034.118967
+1569.707807	0	380.339060	31.625216	26765.694375
+2048.318765	1	502.814703	32.061583	26794.094870
+4878.355942	1	308.718223	31.785469	9019.516491
+3394.948104	0	354.869800	31.553766	18461.635011
+3784.598905	0	506.145921	32.828899	22372.102070
+3648.947834	0	503.931222	32.468882	27102.757907
+1722.690965	1	389.086536	31.876640	5309.945334
+1266.660624	0	452.533007	30.468222	28572.903114
+794.701939	1	459.408945	32.075307	21311.040821
+1461.841041	0	370.527899	32.775555	10211.935095
+1976.852418	0	492.898069	30.817372	17854.725954
+859.962977	1	304.267257	30.348074	3439.856318
+2900.907710	1	396.919281	31.272958	4858.314485
+3693.615130	1	597.052502	30.903533	25716.531228
+1281.197465	1	470.854828	30.164368	9315.105349
+126.181622	1	381.237663	30.660067	28411.425041
+2517.244075	0	559.007071	30.373940	11135.538898
+2069.720704	1	544.708646	31.610539	16441.322232
+578.677623	1	591.867328	32.146388	21419.935158
+1918.809273	1	308.991680	31.457030	31410.129144
+1074.094412	0	336.860228	30.308287	17215.627286
+3034.994121	0	560.991229	31.862778	17867.418001
+4794.119298	1	480.292221	30.685158	11676.367480
+3307.911419	0	389.291016	30.558138	31108.361766
+457.891802	1	588.926068	32.330020	21119.054157
+1258.403059	0	332.016717	31.309245	16741.712001
+3312.429446	0	568.695418	31.010073	14155.107714
+3839.897879	0	370.810835	31.722406	16960.037012
+2068.214455	0	392.107828	30.058746	32853.457910
+2526.811696	0	510.287902	30.913056	22333.505644
+914.090787	1	323.087744	32.697177	14094.308393
+1890.199376	0	597.011219	31.259415	19326.502842
+1234.225123	0	536.105198	30.519191	9869.430841
+350.596239	1	320.162343	30.373749	5065.307636
+2846.841176	0	403.168597	31.624641	25354.766351
+1853.530932	1	564.965357	30.095729	11551.597590
+1183.876207	1	572.411649	32.013383	17167.971369
+3953.600477	0	404.253211	30.364392	17515.400202
+3289.696058	1	576.771217	31.015263	14654.467190
+2975.113909	1	587.011738	31.223106	7437.225919
+1404.141852	0	372.793625	30.325109	13500.525950
+1634.182114	0	569.705673	32.338410	27233.776345
+462.646125	1	467.892571	30.013450	27556.195432
+4138.443866	0	318.632678	30.348871	21795.067964
+4139.367443	1	304.173328	32.473154	29126.297266
+969.741373	1	599.886523	32.409973	16299.878199
+1494.463287	1	429.995117	30.484126	17461.996880
+4336.770459	1	416.241963	30.152207	32032.419174
+3064.782012	1	428.313584	31.688383	31731.608033
+2581.013362	0	490.480997	32.990983	17803.475008
+413.230864	1	430.932119	30.358681	18338.089371
+4469.602591	0	544.949864	30.599950	17579.676286
+2299.774314	1	532.263729	32.087371	25491.390739
+3570.957635	0	429.164688	30.798996	21783.084247
+2730.725224	0	434.512962	32.353024	8584.173078
+1859.613968	0	465.494240	30.853468	24199.875583
+3239.212454	1	585.752947	31.392592	17429.754381
+1626.243010	0	548.642457	32.586064	28320.002213
+4552.584886	0	411.908494	32.541147	18556.711124
+719.687465	1	437.155107	32.439905	18592.734838
+4528.629292	1	598.029535	30.261328	28073.717443
+1445.996134	1	407.243137	30.545202	28549.910302
+2143.373187	1	581.134422	30.728743	26291.822745
+4543.013656	0	406.670256	30.716994	24689.785142
+3479.794580	0	585.305633	31.528087	18146.824396
+2206.562888	0	526.292818	32.250928	6586.281804
+1796.678722	0	441.391846	32.716749	16294.189483
+2705.347154	0	551.894682	31.578422	11390.827042
+172.103511	1	320.919515	31.863888	29876.119334
+315.943273	1	512.197902	32.302445	17856.311999
+2750.695088	1	565.301177	31.514433	19939.221077
+4398.626158	0	418.977196	32.337330	4024.240756
+1522.050792	0	554.491924	32.249187	30588.435646
+3385.739992	1	496.030916	31.480018	17815.393181
+955.825566	1	393.353810	31.434487	26026.721071
+3971.619403	1	552.518065	30.319670	5068.002389
+2010.848206	1	569.817785	31.925723	26117.233780
+2181.752401	1	535.925058	30.952605	3509.328188
+905.194864	1	588.512406	30.229715	15643.423750
+3274.240917	0	590.044688	32.642379	13352.913630
+2061.196669	0	457.883033	30.745459	19655.487967
+4056.062516	0	354.337157	30.418176	24440.653038
+611.999600	0	432.598681	30.201091	19387.208118
+45.061679	1	437.997979	31.939322	21882.265038
+2091.842258	1	445.122275	32.963802	4496.459612
+2785.821696	1	535.953261	32.295237	5166.117813
+1272.363761	0	498.289820	31.101707	13536.602174
+2161.870929	0	487.379529	30.927239	22791.304718
+1230.121506	0	326.397921	31.953971	21880.979367
+2065.316190	0	405.291555	30.660933	28025.816633
+3230.173916	1	365.768097	30.055539	23327.051800
+4572.451029	1	323.399890	31.386897	21097.082477
+4916.172714	0	384.428209	32.754127	10981.900793
+4882.524497	0	399.434058	30.795923	18117.477126
+1457.322605	1	412.012101	30.834341	20230.063544
+1988.228627	0	566.906278	31.371606	15413.227181
+4337.262787	1	316.056609	32.556132	11299.235579
+2762.610907	1	454.177332	32.779747	14436.150973
+4756.268480	1	562.493863	32.727774	26209.569931
+3031.941096	0	313.505196	31.386484	9197.983181
+4586.200757	0	329.983728	30.115395	27039.250998
+300.892434	0	520.668472	32.713615	14579.471742
+392.962829	0	513.293270	30.568538	10311.182381
+2116.838847	1	355.318371	30.883049	18887.246656
+779.846218	1	407.952315	30.145534	22063.619725
+4236.655978	0	326.344600	32.797447	16004.751246
+4008.051049	1	319.382840	30.262423	20092.936132
+1550.891721	1	570.189663	32.238898	11686.528747
+2616.214276	1	448.726264	31.633295	26368.520969
+2775.847491	1	532.436984	30.938190	21751.684582
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/coxlassotest.html	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,167 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
+        <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 
+        <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
+        <meta name="generator" content="Galaxy rgToolFactory.py tool output - see http://g2.trac.bx.psu.edu/" /> 
+        <title></title> 
+        <link rel="stylesheet" href="/static/style/base.css" type="text/css" /> 
+        </head> 
+        <body> 
+        <div class="toolFormBody"> 
+        
+<div class="infomessage">Galaxy Tool "rglasso" run at 18/02/2015 22:06:08</div><br/>
+<div class="toolFormTitle">cox images and outputs</div>
+(Click on a thumbnail image to download the corresponding original PDF image)<br/>
+<div><table class="simple" cellpadding="2" cellspacing="2">
+<tr>
+<td><a href="cox_Coxglmnettest_glmnet_cvdeviance.pdf"><img src="cox_Coxglmnettest_glmnet_cvdeviance.png" title="Click to download a PDF of cox_Coxglmnettest_glmnet_cvdeviance.pdf" hspace="5" width="400" 
+                           alt="Image called cox_Coxglmnettest_glmnet_cvdeviance.pdf"/></a></td>
+
+<td><a href="cox_Coxglmnettest_glmnetdev.pdf"><img src="cox_Coxglmnettest_glmnetdev.png" title="Click to download a PDF of cox_Coxglmnettest_glmnetdev.pdf" hspace="5" width="400" 
+                           alt="Image called cox_Coxglmnettest_glmnetdev.pdf"/></a></td>
+</tr>
+
+</table></div>
+
+<div class="toolFormTitle">cox log output</div>
+
+<pre>
+
+[1] @@@ Cox model will be predicted at times = 3.724234,1325.40516225,2373.090418,3650.1730825,4989.405682
+
+[1] Times each predictor was selected in CV models (excluding zero count predictors)
+
+         hits_lambda_1se hits_lambda_min
+
+rhubarb               10              10
+
+vegemite               6               6
+
+[1] @@@ Results preview:
+
+        regulator partial_likelihood forced_in glmnet_model best_lambda lambdaChoice alpha
+
+rhubarb   rhubarb          0.0012215      TRUE          cox     0.04197   lambda.1se  0.95
+
+
+</pre>
+
+<div class="toolFormTitle">rglasso log output</div>
+
+<pre>
+
+Loading required package: Matrix
+
+Loading required package: methods
+
+Loaded glmnet 1.9-8
+
+Loaded lars 1.2
+
+Loading required package: splines
+
+Warning messages:
+
+1: In if (is.na(predict_at)) { :
+
+  the condition has length > 1 and only the first element will be used
+
+2: In if (class(p) == "try-error") { :
+
+  the condition has length > 1 and only the first element will be used
+
+3: In plot.window(...) : "label" is not a graphical parameter
+
+4: In plot.xy(xy, type, ...) : "label" is not a graphical parameter
+
+5: In axis(side = side, at = at, labels = labels, ...) :
+
+  "label" is not a graphical parameter
+
+6: In axis(side = side, at = at, labels = labels, ...) :
+
+  "label" is not a graphical parameter
+
+7: In box(...) : "label" is not a graphical parameter
+
+8: In title(...) : "label" is not a graphical parameter
+
+
+</pre>
+
+<div class="toolFormTitle">Other log output</div>
+
+<pre>
+
+## Toolfactory running rglasso as Rscript script
+
+[1] @@@ Using alpha = 0.95 for all models
+
+[1] @@@@ Input has 500 samples and 3 predictors
+
+[1] @@@ Cox model will predict yvar= status using cols= rhubarb,vegemite,apple n preds= 3 forced in= rhubarb
+
+[1] @@@ SessionInfo for this R session:
+
+R version 3.1.0 (2014-04-10)
+
+Platform: x86_64-unknown-linux-gnu (64-bit)
+
+locale:
+
+ [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C               LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8     LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8    LC_PAPER=en_AU.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
+
+attached base packages:
+
+[1] splines   methods   stats     graphics  grDevices utils     datasets  base     
+
+other attached packages:
+
+[1] pec_2.4.4       survival_2.37-7 lars_1.2        glmnet_1.9-8    Matrix_1.1-5   
+
+loaded via a namespace (and not attached):
+
+[1] codetools_0.2-10 foreach_1.4.2    grid_3.1.0       iterators_1.0.7  lattice_0.20-29  lava_1.3         prodlim_1.5.1   
+
+Warning messages:
+
+1: In if (is.na(predict_at)) { ... :
+
+  the condition has length > 1 and only the first element will be used
+
+2: In if (class(p) == "try-error") { ... :
+
+  the condition has length > 1 and only the first element will be used
+
+3: In plot.window(...) : "label" is not a graphical parameter
+
+4: In plot.xy(xy, type, ...) : "label" is not a graphical parameter
+
+5: In axis(side = side, at = at, labels = labels, ...) :
+
+  "label" is not a graphical parameter
+
+6: In axis(side = side, at = at, labels = labels, ...) :
+
+  "label" is not a graphical parameter
+
+7: In box(...) : "label" is not a graphical parameter
+
+8: In title(...) : "label" is not a graphical parameter
+
+
+</pre>
+
+<div class="toolFormTitle">All output files available for downloading</div>
+
+<div><table class="colored" cellpadding="3" cellspacing="3"><tr><th>Output File Name (click to view)</th><th>Size</th></tr>
+
+<tr><td><a href="cox_Coxglmnettest_glmnet_cvdeviance.pdf">cox_Coxglmnettest_glmnet_cvdeviance.pdf</a></td><td>6.4 KB</td></tr>
+<tr class="odd_row"><td><a href="cox_Coxglmnettest_glmnetdev.pdf">cox_Coxglmnettest_glmnetdev.pdf</a></td><td>5.3 KB</td></tr>
+<tr><td><a href="cox_cross_validation_model_counts.xls">cox_cross_validation_model_counts.xls</a></td><td>42 B</td></tr>
+<tr class="odd_row"><td><a href="cox_rglasso.log">cox_rglasso.log</a></td><td>522 B</td></tr>
+<tr><td><a href="rglasso.Rscript">rglasso.Rscript</a></td><td>21.5 KB</td></tr>
+<tr class="odd_row"><td><a href="rglasso_error.log">rglasso_error.log</a></td><td>803 B</td></tr>
+<tr><td><a href="rglasso_runner.log">rglasso_runner.log</a></td><td>1.7 KB</td></tr>
+</table></div><br/>
+</div></body></html>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/coxlassotest_modelres.xls	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,2 @@
+regulator	partial_likelihood	forced_in	glmnet_model	best_lambda	lambdaChoice	alpha
+rhubarb	0.0012215	TRUE	cox	0.04197	lambda.1se	0.95
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/genTest.R	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,10 @@
+ids=c(1:50)
+io1 = rep(c(0,0,0,0,1),10)
+ip2 = runif(50)+0.1
+ip2[which(ip2>1.0)] = 1.0
+ip1 = runif(50)+0.05
+ip1[which(ip1>1.0)] = 1.0
+df=data.frame(id=ids,input1_observed=io1,input1_predicted=ip1,input2_predicted=ip2)
+fout='test-data/nri_test1.xls'
+write.table(df,file=fout, quote=FALSE, sep="\t",row.names=F)
+# planemo test --job_output_files /home/rlazarus/tmp --test_output /home/rlazarus/tmp/startest/foo.html --update_test_data --galaxy_root /home/rlazarus/galaxy rg_nri.xml
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/nri_test1.xls	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,51 @@
+id	input1_observed	input1_predicted	input2_predicted
+1	0	0.431491391919553	0.786344331596047
+2	0	0.235500678373501	0.37771512279287
+3	0	0.458084875205532	0.343597211781889
+4	0	0.400509147858247	0.50323077281937
+5	1	0.463376078708097	0.28904068809934
+6	0	0.638350193109363	0.745497886231169
+7	0	0.909975615050644	1
+8	0	0.0712537909392267	0.613464191928506
+9	0	0.475019342219457	0.757945845043287
+10	1	0.146289554610848	0.948540200153366
+11	0	0.947521302569658	0.452743433788419
+12	0	0.512624199455604	0.107415618747473
+13	0	0.260238706320524	0.165854234388098
+14	0	0.252348658815026	0.866530107706785
+15	1	0.552841167151928	0.781692814920098
+16	0	0.203356911847368	0.397802447108552
+17	0	0.138653858751059	0.966900746012107
+18	0	0.237485485337675	0.126699626818299
+19	0	0.317045996850356	0.646952681383118
+20	1	0.271802965737879	0.828731852956116
+21	0	0.522744563594461	0.421856845868751
+22	0	0.819749742234126	0.628745510149747
+23	0	0.27876661689952	0.826974717108533
+24	0	0.077877387823537	0.12339704008773
+25	1	0.911161796143279	1
+26	0	0.567042255960405	1
+27	0	0.223712538788095	0.738010874623433
+28	0	0.306199585506693	0.388159935269505
+29	0	0.305726604955271	0.618934138352051
+30	1	0.919456032756716	1
+31	0	0.493467168603092	0.470883537689224
+32	0	0.626042458415031	0.753118774993345
+33	0	0.739080456737429	0.812446624180302
+34	0	0.786149174161255	0.768807894224301
+35	1	0.65491428244859	0.855509085487574
+36	0	0.62289561489597	0.585996081028134
+37	0	0.297479379642755	0.357051227381453
+38	0	0.796507286094129	0.775113077275455
+39	0	0.581927774194628	0.569900369411334
+40	1	0.76229884494096	0.877794308261946
+41	0	0.845583727071062	0.804134764615446
+42	0	0.79128703516908	1
+43	0	0.0507813768461347	0.97111975508742
+44	0	0.49284805515781	0.101141295302659
+45	1	0.665627157501876	0.121852198988199
+46	0	0.059045681450516	0.996109608234838
+47	0	0.0814651515800506	0.852028644317761
+48	0	0.162336849560961	1
+49	0	0.577456943178549	0.343083152920008
+50	1	0.905623372131959	0.651731353392825
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/nri_test1_out.html	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,34 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
+        <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 
+        <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
+        <meta name="generator" content="Galaxy rgToolFactory.py tool output - see http://g2.trac.bx.psu.edu/" /> 
+        <title></title> 
+        <link rel="stylesheet" href="/static/style/base.css" type="text/css" /> 
+        </head> 
+        <body> 
+        <div class="toolFormBody"> 
+        
+<div class="infomessage">Galaxy Tool "rg_NRI" run at 08/01/2015 16:12:57</div><br/>
+<div class="toolFormTitle">rg log output</div>
+
+<pre>
+
+Error in library("e1071") : there is no package called ‘e1071’
+
+Execution halted
+
+
+</pre>
+
+<div class="toolFormTitle">Other log output</div>
+/tmp/tmpq72Dni/job_working_directory/000/2/dataset_2_files/rg_NRI_runner.log is empty<br/>
+<div class="toolFormTitle">All output files available for downloading</div>
+
+<div><table class="colored" cellpadding="3" cellspacing="3"><tr><th>Output File Name (click to view)</th><th>Size</th></tr>
+
+<tr><td><a href="rg_NRI.Rscript">rg_NRI.Rscript</a></td><td>18.1 KB</td></tr>
+<tr class="odd_row"><td><a href="rg_NRI_error.log">rg_NRI_error.log</a></td><td>84 B</td></tr>
+<tr><td><a href="rg_NRI_runner.log">rg_NRI_runner.log</a></td><td>48 B</td></tr>
+</table></div><br/>
+</div></body></html>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml	Sat Oct 31 02:26:24 2015 -0400
@@ -0,0 +1,120 @@
+<?xml version="1.0"?>
+<tool_dependency>
+    <package name="R_3_2_2" version="3.2.2">
+        <repository changeset_revision="883acf7a3ddb" name="package_r_3_2_2" owner="mvdbeek" prior_installation_required="True" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+    <package name="graphicsmagick" version="1.3.18">
+        <repository changeset_revision="bff3f66adff2" name="package_graphicsmagick_1_3" owner="iuc" prior_installation_required="True" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+    <package name="ghostscript" version="9.10">
+        <repository changeset_revision="9345d2740f0c" name="package_ghostscript_9_10" owner="devteam" prior_installation_required="True" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+    <package name="glmnet_lars_3_2" version="3.2">
+        <install version="1.0">
+            <actions>
+                <action type="setup_r_environment">
+                    <repository changeset_revision="883acf7a3ddb" name="package_r_3_2_2" owner="mvdbeek" toolshed="https://testtoolshed.g2.bx.psu.edu">
+                        <package name="R_3_2_2" version="3.2.2" />
+                    </repository>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RColorBrewer_1.0-5.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RColorBrewer_1.1-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Rcpp_0.11.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Rcpp_0.12.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RcppArmadillo_0.4.450.1.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RcppArmadillo_0.4.500.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RcppArmadillo_0.4.550.1.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RcppArmadillo_0.4.600.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/RcppEigen_0.3.2.5.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/e1071_1.6-4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/e1071_1.6-7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/plyr_1.8.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/plyr_1.8.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/digest_0.6.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/digest_0.6.8.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/gtable_0.1.2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/stringi_1.0-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/magrittr_1.5.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/stringr_0.6.2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/stringr_1.0.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/reshape2_1.4.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/reshape2_1.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/dichromat_2.0-0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/colorspace_1.2-4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/colorspace_1.2-6.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/munsell_0.4.2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/labeling_0.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/scales_0.2.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/scales_0.3.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/proto_0.3-10.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/ggplot2_1.0.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/ggplot2_1.0.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/minqa_1.2.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/nloptr_1.0.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/lme4_1.1-10.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/lme4_1.1-7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pbkrtest_0.4-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/SparseM_1.05.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/SparseM_1.6.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/SparseM_1.7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/MatrixModels_0.4-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/quantreg_5.05.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/quantreg_5.19.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/car_2.0-22.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/car_2.1-0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/caret_6.0-35.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/caret_6.0-37.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/caret_6.0-41.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/caret_6.0-58.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/iterators_1.0.7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/iterators_1.0.8.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/foreach_1.4.2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/foreach_1.4.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pROC_1.7.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pROC_1.8.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Formula_1.1-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Formula_1.2-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/latticeExtra_0.6-26.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/acepack_1.3-3.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/gridExtra_2.0.0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Hmisc_3.14-5.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Hmisc_3.14-6.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/Hmisc_3.17-0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pracma_1.7.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pracma_1.7.9.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pracma_1.8.6.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/survival_2.37-7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/survival_2.38-3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/lars_1.2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/glmnet_1.9-8.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/glmnet_2.0-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/numDeriv_2012.9-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/numDeriv_2014.2-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/lava_1.3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/lava_1.4.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/prodlim_1.5.1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/prodlim_1.5.5.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/polspline_1.1.12.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/polspline_1.1.9.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/mvtnorm_1.0-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/mvtnorm_1.0-3.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/TH.data_1.0-5.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/TH.data_1.0-6.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/zoo_1.7-11.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/zoo_1.7-12.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/sandwich_2.3-2.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/sandwich_2.3-4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/multcomp_1.3-8.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/multcomp_1.4-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/rms_4.2-1.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/rms_4.4-0.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pec_2.3.7.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pec_2.4.4.tar.gz?raw=true</package>
+                    <package>https://github.com/fubar2/galaxy_tool_source/blob/master/RELEASE_2_14/pec_2.4.7.tar.gz?raw=true</package>
+                </action>
+            </actions>
+        </install>
+        <readme>
+        Yee-Haw! Lasso for Galaxy!
+        </readme>
+    </package>
+</tool_dependency>