changeset 55:bf016b884c68 draft

Uploaded
author iuc
date Tue, 28 Apr 2015 22:46:28 -0400
parents 1f875cb50ceb
children 9b59cd40f20d
files htseqsams2mx.py htseqsams2mx.xml test-data/generatetest.sh test-data/htseqsams2mx_test1_out.xls test-data/rn4_chr20_100k.gtf test-data/rn4chr20test1.bam test-data/rn4chr20test1.bam.bai test-data/rn4chr20test2.bam test-data/rn4chr20test2.bam.bai tool_dependencies.xml
diffstat 10 files changed, 0 insertions(+), 619 deletions(-) [+]
line wrap: on
line diff
--- a/htseqsams2mx.py	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,384 +0,0 @@
-# May 2013
-# Change to htseq as the counting engine - wrap so arbitrary number of columns created  
-# borged Simon Anders' "count.py" since we need a vector of counts rather than a new sam file as output
-# note attribution for htseq and count.py :
-## Written by Simon Anders (sanders@fs.tum.de), European Molecular Biology
-## Laboratory (EMBL). (c) 2010. Released under the terms of the GNU General
-## Public License v3. Part of the 'HTSeq' framework, version HTSeq-0.5.4p3
-# updated ross lazarus august 2011 to NOT include region and to finesse the name as the region for bed3 format inputs
-# also now sums all duplicate named regions and provides a summary of any collapsing as the info
-# updated ross lazarus july 26 to respect the is_duplicate flag rather than try to second guess
-# note Heng Li argues that removing dupes is a bad idea for RNA seq
-# updated ross lazarus july 22 to count reads OUTSIDE each bed region during the processing of each bam
-# added better sorting with decoration of a dict key later sorted and undecorated.
-# code cleaned up and galaxified ross lazarus july 18 et seq.
-# bams2mx.py -turns a series of bam and a bed file into a matrix of counts Usage bams2mx.py <halfwindow> <bedfile.bed> <bam1.bam> 
-# <bam2.bam>
-# uses pysam to read and count bam reads over each bed interval for each sample for speed
-# still not so fast
-# TODO options -shift -unique
-#
-"""
-how this gets run:
-
-(vgalaxy)galaxy@iaas1-int:~$ cat database/job_working_directory/027/27014/galaxy_27014.sh
-#!/bin/sh
-GALAXY_LIB="/data/extended/galaxy/lib"
-if [ "$GALAXY_LIB" != "None" ]; then
-    if [ -n "$PYTHONPATH" ]; then
-        PYTHONPATH="$GALAXY_LIB:$PYTHONPATH"
-    else
-        PYTHONPATH="$GALAXY_LIB"
-    fi
-    export PYTHONPATH
-fi
-
-cd /data/extended/galaxy/database/job_working_directory/027/27014
-python /data/extended/galaxy/tools/rgenetics/htseqsams2mx.py -g "/data/extended/galaxy/database/files/034/dataset_34115.dat" -o "/data/extended/galaxy/database/files/034/dataset_34124.dat" -m "union" --id_attribute "gene_id" --feature_type "exon"     --samf "'/data/extended/galaxy/database/files/033/dataset_33980.dat','T5A_C1PPHACXX_AGTTCC_L003_R1.fastq_bwa.sam'"     --samf "'/data/extended/galaxy/database/files/033/dataset_33975.dat','T5A_C1PPHACXX_AGTTCC_L002_R1.fastq_bwa.sam'"; cd /data/extended/galaxy; /data/extended/galaxy/set_metadata.sh ./database/files /data/extended/galaxy/database/job_working_directory/027/27014 . /data/extended/galaxy/universe_wsgi.ini /data/tmp/tmpmwsElH /data/extended/galaxy/database/job_working_directory/027/27014/galaxy.json /data/extended/galaxy/database/job_working_directory/027/27014/metadata_in_HistoryDatasetAssociation_45202_sfOMGa,/data/extended/galaxy/database/job_working_directory/027/27014/metadata_kwds_HistoryDatasetAssociation_45202_gaMnxa,/data/extended/galaxy/database/job_working_directory/027/27014/metadata_out_HistoryDatasetAssociation_45202_kZPsZO,/data/extended/galaxy/database/job_working_directory/027/27014/metadata_results_HistoryDatasetAssociation_45202_bXU7IU,,/data/extended/galaxy/database/job_working_directory/027/27014/metadata_override_HistoryDatasetAssociation_45202_hyLAvh
-echo $? > /data/extended/galaxy/database/job_working_directory/027/27014/galaxy_27014.ec
-
-"""
-
-import os
-import re
-import sys 
-import HTSeq.scripts.count as htcount
-import optparse 
-import tempfile 
-import shutil
-import operator
-import subprocess
-import itertools
-import warnings
-import traceback
-import HTSeq
-import time
-
-
-class Xcpt(Exception):
-    def __init__(self, msg):
-        self.msg = msg
-
-
-def htseqMX(gff_filename,sam_filenames,colnames,sam_exts,sam_bais,opts):
-    """
-    Code taken from count.py in Simon Anders HTSeq distribution
-    Wrapped in a loop to accept multiple bam/sam files and their names from galaxy to
-    produce a matrix of contig counts by sample for downstream use in edgeR and DESeq tools
-    """
-    class UnknownChrom( Exception ):
-       pass
-       
-    def my_showwarning( message, category, filename, lineno = None, line = None ):
-       sys.stdout.write( "Warning: %s\n" % message )      
-        
-    def invert_strand( iv ):
-       iv2 = iv.copy()
-       if iv2.strand == "+":
-          iv2.strand = "-"
-       elif iv2.strand == "-":
-          iv2.strand = "+"
-       else:
-          raise ValueError, "Illegal strand"
-       return iv2
-
-    def count_reads_in_features( sam_filenames, colnames, gff_filename, opts ):
-       """ Hacked version of htseq count.py
-       """
-       if opts.quiet:
-          warnings.filterwarnings( action="ignore", module="HTSeq" ) 
-       features = HTSeq.GenomicArrayOfSets( "auto", opts.stranded != "no" )
-       mapqMin = int(opts.mapqMin)       
-       counts = {}
-       nreads = 0
-       empty = 0
-       ambiguous = 0
-       notaligned = 0
-       lowqual = 0
-       nonunique = 0          
-       filtered = 0 # new filter_extras - need a better way to do this - independent filter tool?
-       gff = HTSeq.GFF_Reader( gff_filename )   
-       try:
-          for i,f in enumerate(gff):
-             if f.type == opts.feature_type:
-                try:
-                   feature_id = f.attr[ opts.id_attribute ]
-                except KeyError:
-                   try:
-                       feature_id = f.attr[ 'gene_id' ]
-                   except KeyError:
-                       sys.exit( "Feature at row %d %s does not contain a '%s' attribute OR a gene_id attribute - faulty GFF?" % 
-                          ( (i+1), f.name, opts.id_attribute ) )
-                if opts.stranded != "no" and f.iv.strand == ".":
-                   sys.exit( "Feature %s at %s does not have strand information but you are "
-                      "running htseq-count in stranded mode. Use '--stranded=no'." % 
-                      ( f.name, f.iv ) )
-                features[ f.iv ] += feature_id
-                counts[ feature_id ] = [0 for x in colnames] # we use sami as an index here to bump counts later
-       except:
-          sys.stderr.write( "Error occured in %s.\n" % gff.get_line_number_string() )
-          raise
-          
-       if not opts.quiet:
-          sys.stdout.write( "%d GFF lines processed.\n" % i )
-          
-       if len( counts ) == 0 and not opts.quiet:
-          sys.stdout.write( "Warning: No features of type '%s' found.\n" % opts.feature_type )
-       for sami,sam_filename in enumerate(sam_filenames):
-           colname = colnames[sami]
-           isbam = sam_exts[sami] == 'bam'
-           hasbai = sam_bais[sami] > ''
-           if hasbai:
-               tempname = os.path.splitext(os.path.basename(sam_filename))[0]
-               tempbam = '%s_TEMP.bam' % tempname
-               tempbai = '%s_TEMP.bai' % tempname
-               os.link(sam_filename,tempbam)
-               os.link(sam_bais[sami],tempbai)
-           try:
-              if isbam:
-                  if hasbai:
-                      read_seq = HTSeq.BAM_Reader ( tempbam )
-                  else:
-                      read_seq = HTSeq.BAM_Reader( sam_filename )
-              else:
-                  read_seq = HTSeq.SAM_Reader( sam_filename )
-              first_read = iter(read_seq).next()
-              pe_mode = first_read.paired_end
-           except:
-              if isbam:
-                  print >> sys.stderr, "Error occured when reading first line of bam file %s colname=%s \n" % (sam_filename,colname )
-              else:
-                  print >> sys.stderr, "Error occured when reading first line of sam file %s colname=%s \n" % (sam_filename,colname )
-              raise
-
-           try:
-              if pe_mode:
-                 read_seq_pe_file = read_seq
-                 read_seq = HTSeq.pair_SAM_alignments( read_seq )
-              for seqi,r in enumerate(read_seq):
-                 nreads += 1
-                 if not pe_mode:
-                    if not r.aligned:
-                       notaligned += 1
-                       continue
-                    try:
-                       if len(opts.filter_extras) > 0:
-                           for extra in opts.filter_extras:
-                               if r.optional_field(extra):
-                                     filtered += 1
-                                     continue 
-                       if r.optional_field( "NH" ) > 1:
-                          nonunique += 1
-                          continue
-                    except KeyError:
-                       pass
-                    if r.aQual < mapqMin:
-                       lowqual += 1
-                       continue
-                    if opts.stranded != "reverse":
-                       iv_seq = ( co.ref_iv for co in r.cigar if co.type == "M" and co.size > 0 )
-                    else:
-                       iv_seq = ( invert_strand( co.ref_iv ) for co in r.cigar if co.type == "M" and co.size > 0 )            
-                 else:
-                    if r[0] is not None and r[0].aligned:
-                       if opts.stranded != "reverse":
-                          iv_seq = ( co.ref_iv for co in r[0].cigar if co.type == "M" and co.size > 0 )
-                       else:
-                          iv_seq = ( invert_strand( co.ref_iv ) for co in r[0].cigar if co.type == "M" and co.size > 0 )
-                    else:
-                       iv_seq = tuple()
-                    if r[1] is not None and r[1].aligned:            
-                       if opts.stranded != "reverse":
-                          iv_seq = itertools.chain( iv_seq, 
-                             ( invert_strand( co.ref_iv ) for co in r[1].cigar if co.type == "M" and co.size > 0 ) )
-                       else:
-                          iv_seq = itertools.chain( iv_seq, 
-                             ( co.ref_iv for co in r[1].cigar if co.type == "M" and co.size > 0 ) )
-                    else:
-                       if ( r[0] is None ) or not ( r[0].aligned ):
-                          notaligned += 1
-                          continue         
-                    try:
-                       if ( r[0] is not None and r[0].optional_field( "NH" ) > 1 ) or \
-                             ( r[1] is not None and r[1].optional_field( "NH" ) > 1 ):
-                          nonunique += 1
-                          continue
-                    except KeyError:
-                       pass
-                    if ( r[0] and r[0].aQual < mapqMin ) or ( r[1] and r[1].aQual < mapqMin ):
-                       lowqual += 1
-                       continue         
-                 
-                 try:
-                    if opts.mode == "union":
-                       fs = set()
-                       for iv in iv_seq:
-                          if iv.chrom not in features.chrom_vectors:
-                             raise UnknownChrom
-                          for iv2, fs2 in features[ iv ].steps():
-                             fs = fs.union( fs2 )
-                    elif opts.mode == "intersection-strict" or opts.mode == "intersection-nonempty":
-                       fs = None
-                       for iv in iv_seq:
-                          if iv.chrom not in features.chrom_vectors:
-                             raise UnknownChrom
-                          for iv2, fs2 in features[ iv ].steps():
-                             if len(fs2) > 0 or opts.mode == "intersection-strict":
-                                if fs is None:
-                                   fs = fs2.copy()
-                                else:
-                                   fs = fs.intersection( fs2 )
-                    else:
-                       sys.exit( "Illegal overlap mode %s" % opts.mode )
-                    if fs is None or len( fs ) == 0:
-                       empty += 1
-                    elif len( fs ) > 1:
-                       ambiguous += 1
-                    else:
-                       ck = list(fs)[0]  
-                       counts[ck][sami] += 1 # end up with counts for each sample as a list
-                 except UnknownChrom:
-                    if not pe_mode:
-                       rr = r 
-                    else: 
-                       rr = r[0] if r[0] is not None else r[1]
-                    empty += 1
-                    if not opts.quiet:
-                        sys.stdout.write( ( "Warning: Skipping read '%s', because chromosome " +
-                          "'%s', to which it has been aligned, did not appear in the GFF file.\n" ) % 
-                          ( rr.read.name, iv.chrom ) )
-           except:
-              if not pe_mode:
-                 sys.stderr.write( "Error occured in %s.\n" % read_seq.get_line_number_string() )
-              else:
-                 sys.stderr.write( "Error occured in %s.\n" % read_seq_pe_file.get_line_number_string() )
-              raise
-
-           if not opts.quiet:
-              sys.stdout.write( "%d sam %s processed for %s.\n" % ( seqi, "lines " if not pe_mode else "line pairs", colname ) )
-       return counts,empty,ambiguous,lowqual,notaligned,nonunique,filtered,nreads
-
-    warnings.showwarning = my_showwarning
-    assert os.path.isfile(gff_filename),'## unable to open supplied gff file %s' % gff_filename
-    try:
-        counts,empty,ambiguous,lowqual,notaligned,nonunique,filtered,nreads = count_reads_in_features( sam_filenames, colnames, gff_filename,opts)
-    except:
-        sys.stderr.write( "Error: %s\n" % str( sys.exc_info()[1] ) )
-        sys.stderr.write( "[Exception type: %s, raised in %s:%d]\n" % 
-         ( sys.exc_info()[1].__class__.__name__, 
-           os.path.basename(traceback.extract_tb( sys.exc_info()[2] )[-1][0]), 
-           traceback.extract_tb( sys.exc_info()[2] )[-1][1] ) )
-        sys.exit( 1 )
-    return counts,empty,ambiguous,lowqual,notaligned,nonunique,filtered,nreads
-
-
-def usage():
-        print >> sys.stdout, """Usage: python htseqsams2mx.py -w <halfwindowsize> -g <gfffile.gff> -o <outfilename> [-i] [-c] --samf "<sam1.sam>,<sam1.column_header>" --samf "...<samN.column_header>" """
-        sys.exit(1)
-
-if __name__ == "__main__":
-    """  
-    <command interpreter="python">
-    htseqsams2mx.py -w "$halfwin" -g "$gfffile" -o "$outfile" -m "union"
-    #for $s in $samfiles:
-    --samf "'${s.samf}','${s.samf.name}'"
-    #end for
-    </command>
-    """
-    if len(sys.argv) < 2:
-        usage()
-        sys.exit(1)
-    starttime = time.time()
-    op = optparse.OptionParser()
-    # All tools
-    op.add_option('-w', '--halfwindow', default="0")
-    op.add_option('-m', '--mode', default="union")
-    op.add_option('-s', '--stranded', default="no")
-    op.add_option('-y', '--feature_type', default="exon")
-    op.add_option('-g', '--gff_file', default=None)
-    op.add_option('-o', '--outfname', default=None)
-    op.add_option('-f','--forceName', default="false")
-    op.add_option('--samf', default=[], action="append")
-    op.add_option('--filter_extras', default=[], action="append")
-    op.add_option('--mapqMin', default='0')
-    op.add_option( "-t", "--type", type="string", dest="featuretype",
-          default = "exon", help = "feature type (3rd column in GFF file) to be used, " +
-             "all features of other type are ignored (default, suitable for Ensembl " +
-             "GTF files: exon)" )
-
-    op.add_option( "-i", "--id_attribute", type="string", dest="id_attribute",
-          default = "gene_name", help = "GTF attribute to be used as feature ID (default, " +
-          "suitable for Ensembl GTF files: gene_id)" )
-
-    op.add_option( "-q", "--quiet", action="store_true", dest="quiet", default = False,
-          help = "suppress progress report and warnings" )    
-    opts, args = op.parse_args()
-    halfwindow = int(opts.halfwindow)
-    gff_file = opts.gff_file
-    assert os.path.isfile(gff_file),'##ERROR htseqsams2mx: Supplied input GFF file "%s" not found' % gff_file
-    outfname = opts.outfname
-    sam_filenames = []
-    colnames = []
-    samf = opts.samf
-    samfsplit = [x.split(',') for x in samf] # one per samf set
-    samsets = []
-    for samfs in samfsplit:
-       samset = [x.replace("'","") for x in samfs]
-       samset = [x.replace('"','') for x in samset]
-       samsets.append(samset)
-    samsets = [x for x in samsets if x[0].lower() != 'none'] 
-    # just cannot stop getting these on cl! wtf in cheetah for a repeat group?
-    samfnames = [x[0] for x in samsets]
-    if len(set(samfnames)) != len(samfnames):
-       samnames = []
-       delme = []
-       for i,s in enumerate(samfnames):
-           if s in samnames:
-              delme.append(i)
-              print sys.stdout,'## WARNING htseqsams2mx: Duplicate input sam file %s in %s - ignoring dupe in 0 based position %s' %\
-             (s,','.join(samfnames), str(delme))
-           else:
-              samnames.append(s) # first time
-       samsets = [x for i,x in enumerate(samsets) if not (i in delme)]
-       samfnames = [x[0] for x in samsets]
-    scolnames = [x[1]for x in samsets]
-    assert len(samfnames) == len(scolnames), '##ERROR sams2mx: Count of sam/cname not consistent - %d/%d' % (len(samfnames),len(scolnames))
-    sam_exts = [x[2] for x in samsets]
-    assert len(samfnames) == len(sam_exts), '##ERROR sams2mx: Count of extensions not consistent - %d/%d' % (len(samfnames),len(sam_exts))
-    sam_bais = [x[3] for x in samsets] # these only exist for bams and need to be finessed with a symlink so pysam will just work
-    for i,b in enumerate(samfnames):
-        assert os.path.isfile(b),'## Supplied input sam file "%s" not found' % b
-        sam_filenames.append(b)
-        sampName = scolnames[i] # better be unique
-        sampName = sampName.replace('#','') # for R
-        sampName = sampName.replace('(','') # for R
-        sampName = sampName.replace(')','') # for R
-        sampName = sampName.replace(' ','_') # for R
-        colnames.append(sampName)
-    counts,empty,ambiguous,lowqual,notaligned,nonunique,filtered,nreads = htseqMX(gff_file, sam_filenames,colnames,sam_exts,sam_bais,opts)
-    heads = '\t'.join(['Contig',] + colnames)
-    res = [heads,]
-    contigs = counts.keys()
-    contigs.sort()
-    totalc = 0
-    emptycontigs = 0
-    for contig in contigs:
-        thisc = sum(counts[contig])
-        if thisc > 0: # no output for empty contigs
-            totalc += thisc
-            crow = [contig,] + ['%d' % x for x in counts[contig]]
-            res.append('\t'.join(crow))
-        else:
-            emptycontigs += 1
-    outf = open(opts.outfname,'w')
-    outf.write('\n'.join(res))
-    outf.write('\n')
-    outf.close()
-    walltime = int(time.time() - starttime)
-    accumulatornames = ('walltime (seconds)','total reads read','total reads counted','number of contigs','total empty reads','total ambiguous reads','total low quality reads',
-           'total not aligned reads','total not unique mapping reads','extra filtered reads','empty contigs')
-    accums = (walltime,nreads,totalc,len(contigs),empty,ambiguous,lowqual,notaligned,nonunique,filtered,emptycontigs)
-    fracs = (1.0,1.0,float(totalc)/nreads,1.0,float(empty)/nreads,float(ambiguous)/nreads,float(lowqual)/nreads,float(notaligned)/nreads,float(nonunique)/nreads,float(filtered)/nreads,float(emptycontigs)/len(contigs))
-    notes = ['%s = %d (%2.3f)' % (accumulatornames[i],x,100.0*fracs[i]) for i,x in enumerate(accums)]
-    print >> sys.stdout, '\n'.join(notes)
-    sys.exit(0)
--- a/htseqsams2mx.xml	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,133 +0,0 @@
-<tool id="htseqsams2mxlocal" name="SAM/BAM to count matrix" version="0.5">
-  <description>using HTSeq code</description>
-  <stdio>
-   <regex match=".*" source="both" level="warning" description="chatter from HTSeq:"/>
-  </stdio>
-  <requirements>
-      <requirement type="package" version="0.7.6">pysam</requirement>
-      <requirement type="package" version="1.2.1">matplotlib</requirement> 
-      <requirement type="package" version="0.5.4p3">htseq</requirement>
-  </requirements>
-  <command interpreter="python">
-    htseqsams2mx.py -g "$gfffile" -o "$outfile" -m "$model" --id_attribute "$id_attr" --feature_type "$feature_type"
-    --mapqMin $mapqMin  
-    #for $s in $samfiles:
-      #if $s.ext != 'data':
-        --samf "'${s}','${s.name}','${s.ext}','${s.metadata.bam_index}'" 
-      #end if
-    #end for
-    #if $filter_extras:
-       --filter_extras "$filter_extras"
-    #end if
-  </command>
-  <inputs>
-    <param format="gtf" name="gfffile" type="data" label="Gene model (GFF) file to count reads over from your current history" size="100" />
-    <param name="mapqMin" label="Filter reads with mapq below than this value" 
-    help="0 to count any mapping quality read. Otherwise only reads at or above specified mapq will be counted" 
-    type="integer" value="5"/>
-    <param name="title" label="Name for this job's output file" type="text" size="80" value="bams to DGE count matrix"/>
-    <param name="stranded" value="false" type="boolean" label="Reads are stranded - use strand in counting" display="checkbox"
-      truevalue="yes" falsevalue="no" checked="no" help="Check this ONLY if you know your sequences are strand specific" />
-    <param name="model"  type="select" label="Model for counting reads over the supplied gene model- see HTSeq docs"
-        help="If in doubt, union is a reasonable default but intersection-strict avoids double counting over overlapping exons">
-        <option value="union" selected="true">union</option>
-        <option value="intersection-strict">intersection-strict</option>
-        <option value="intersection-nonempty">intersection-nonempty</option>
-    </param>   
-    <param name="id_attr" type="select" label="GTF attribute to output as the name for each contig - see HTSeq docs"
-        help="If in doubt, use gene name or if you need the id in your GTF, gene id">
-        <option value="gene_name" selected="true">gene name</option>
-        <option value="gene_id">gene id</option>
-        <option value="transcript_id">transcript id</option>
-        <option value="transcript_name">transcript name</option>
-    </param>   
-    <param name="feature_type" type="select" label="GTF feature type for counting reads over the supplied gene model- see HTSeq docs"
-        help="GTF feature type to count over - exon is a good choice with gene name as the contig to count over">
-        <option value="exon" selected="true">exon</option>
-        <option value="CDS">CDS</option>
-        <option value="UTR">UTR</option>
-        <option value="transcript">transcript</option>
-    </param>   
-    <param name="filter_extras" type="select" label="Filter any read with one or more flags"
-        help="eg the XS tag created by bowtie for multiple reads" optional="true" mutliple="true">
-        <option value="">None</option>
-        <option value="XS">XS:i > 0 - More than one mapping position Bowtie</option>
-        <option value="XS:A">Might be useful for tophat</option>
-    </param>   
-
-    <param name="samfiles" type="data" label="bam/sam file from your history" format="sam,bam" size="100" multiple="true"/>
-  </inputs>
-  <outputs>
-    <data format="tabular" name="outfile" label="${title}_htseqsams2mx.xls" />
-  </outputs>
-  <tests>
-    <test>
-      <param name="feature_type" value="exon" />
-      <param name="gfffile" value="rn4_chr20_100k.gtf" />
-      <param name="samfiles" value="rn4chr20test1.bam,rn4chr20test2.bam" ftype="bam"/>
-      <param name="id_attr" value="gene_name" />
-      <param name="model" value="union" />
-      <param name="stranded" value="no" />
-      <param name="title" value="htseqtest" />
-      <param name="mapqMin" value="0" />
-
-      <output name="outfile" file="htseqsams2mx_test1_out.xls" lines_diff="1"/>
-    </test>
-  </tests>
-  <help>
-
-**What this tool does**
-
-Counts reads in multiple sam/bam format mapped files and generates a matrix ideal for edgeR and other count based tools
-It uses HTSeq to count your sam reads over a gene model supplied as a GTF file
-The output is a tabular text (columnar - spreadsheet) file containing the 
-count matrix for downstream processing. Each row contains the counts from each sample for each
-of the non-emtpy GTF input file contigs matching the GTF attribute choice above. 
-You probably want to use gene level GTF output attribute and count reads that overlap 
-GTF exons for RNA-seq. Or you can count over exons by using transcript level output names or ids. Etc.
-
-----
-
-**Author's plea on replicates**
-
-If you want to interpret the downstream p values in terms of rejecting or accepting the null hypothesis 
-under random sampling with replacement from the universe of possible biological/experimental replicates from which your data was derived,
-which is what published p values are often assumed to do, then you need biological 
-(or for cell culture material experimental) replicates. 
-
-Using technical or no replicates means the downstream p values are not interpretable the way most people would assume 
-they are - ie as the probability of obtaining a result as or more extreme as your experimental data
-in millions of experiments conducted using the same methods under the null hypothesis.
-
-There is no way around this and it is scientific fraud to ignore this issue and publish bogus p values derived from 
-technical or no replicates without making the lack of biological or experimental error in the p value calculations 
-clear to your readers so they can adjust their expectations. However, the buck stops here at higher level inference.
-If you have no replicates, you must not use this tool as the p values are uninterpretable. So there.
-
-See your stats 101 notes on the central limit theorem and test statistics for a refresher or talk to a 
-statistician if this makes no sense please.
-
-**Attribution**
-
-This Galaxy tool relies on HTSeq_ from http://www-huber.embl.de/users/anders/HTSeq/doc/index.html 
-for the tricky work of counting. That code includes the following attribution:
-
-## Written by Simon Anders (sanders@fs.tum.de), European Molecular Biology
-## Laboratory (EMBL). (c) 2010. Released under the terms of the GNU General
-## Public License v3. Part of the 'HTSeq' framework, version HTSeq-0.5.4p3
-
-It will be automatically installed if you use the toolshed as in general, you probably should.
-HTSeq_ must be installed with this tool if you install manually.
-
-Otherwise, all code and documentation comprising this tool including the requirement
-for more than one sample bam
-was written by Ross Lazarus and is 
-licensed to you under the LGPL_ like other rgenetics artefacts
-
-Sorry, I don't use readgroups so had no reason to code read groups. Contributions welcome. Send code
-
-.. _LGPL: http://www.gnu.org/copyleft/lesser.html
-.. _HTSeq: http://www-huber.embl.de/users/anders/HTSeq/doc/index.html
-  </help>
-
-</tool>
--- a/test-data/generatetest.sh	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-python ../htseqsams2mx.py -g rn4_chr20_100k.gtf -o test.xls --samf "'rn4chr20test1.bam','rn4chr20test1.bam','bam','rn4chr20test1.bam.bai'" --samf "'rn4chr20test2.bam','rn4chr20test2.bam','bam','rn4chr20test2.bam.bai'"
--- a/test-data/htseqsams2mx_test1_out.xls	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-Contig	rn4chr20test1.bam	rn4chr20test2.bam
-Clic2	494	944
-F1M7K0_RAT	3	2
-Tmlhe	164	172
--- a/test-data/rn4_chr20_100k.gtf	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,62 +0,0 @@
-chr20	protein_coding	CDS	801	1238	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; protein_id "ENSRNOP00000000957"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	exon	801	1238	.	+	.	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	CDS	1742	1976	.	+	0	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; protein_id "ENSRNOP00000000957"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	exon	1742	1976	.	+	.	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	CDS	2016	2177	.	+	2	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; protein_id "ENSRNOP00000000957"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	exon	2016	2177	.	+	.	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	CDS	2263	2342	.	+	2	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; protein_id "ENSRNOP00000000957"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	exon	2263	2342	.	+	.	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	CDS	2345	2533	.	+	0	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; protein_id "ENSRNOP00000000957"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	exon	2345	2533	.	+	.	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000730"; gene_name "F1M7K0_RAT"; p_id "P14715"; transcript_id "ENSRNOT00000000957"; transcript_name "F1M7K0_RAT"; tss_id "TSS11562";
-chr20	protein_coding	CDS	19528	19708	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	19528	19708	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	19528	19708	.	+	.	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	19528	19708	.	+	.	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	start_codon	19528	19530	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	start_codon	19528	19530	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	21979	22014	.	+	2	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	21979	22014	.	+	.	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	25349	25525	.	+	2	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	25349	25525	.	+	2	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	25349	25525	.	+	.	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	25349	25525	.	+	.	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	35197	35476	.	+	2	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	35197	35476	.	+	2	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	35197	35476	.	+	.	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	35197	35476	.	+	.	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	36764	36883	.	+	1	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	36764	36883	.	+	1	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	36764	36883	.	+	.	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	36764	36883	.	+	.	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	49040	49276	.	+	1	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	49040	49276	.	+	1	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	49040	49276	.	+	.	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	49040	49276	.	+	.	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	55193	55331	.	+	1	exon_number "7"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	55193	55331	.	+	1	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	55193	55331	.	+	.	exon_number "7"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	55193	55331	.	+	.	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	CDS	55883	56011	.	+	0	exon_number "8"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; protein_id "ENSRNOP00000044070"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	CDS	55883	56011	.	+	0	exon_number "7"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; protein_id "ENSRNOP00000000956"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	55883	56124	.	+	.	exon_number "8"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	exon	55883	56124	.	+	.	exon_number "7"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	stop_codon	56012	56014	.	+	0	exon_number "8"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P13601"; transcript_id "ENSRNOT00000049573"; transcript_name "Tmlhe"; tss_id "TSS451";
-chr20	protein_coding	stop_codon	56012	56014	.	+	0	exon_number "7"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000729"; gene_name "Tmlhe"; p_id "P3227"; transcript_id "ENSRNOT00000000956"; transcript_name "TMLH_RAT"; tss_id "TSS451";
-chr20	protein_coding	exon	66518	66785	.	+	.	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	66729	66785	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	start_codon	66729	66731	.	+	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	75931	76040	.	+	0	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	75931	76040	.	+	.	exon_number "2"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	76165	76290	.	+	1	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	76165	76290	.	+	.	exon_number "3"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	79941	80047	.	+	1	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	79941	80047	.	+	.	exon_number "4"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	80692	80873	.	+	2	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	80692	80873	.	+	.	exon_number "5"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	CDS	81142	81294	.	+	0	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; protein_id "ENSRNOP00000000955"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	81142	81536	.	+	.	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	stop_codon	81295	81297	.	+	0	exon_number "6"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000000728"; gene_name "Clic2"; p_id "P19357"; transcript_id "ENSRNOT00000000955"; transcript_name "Clic2"; tss_id "TSS24592";
-chr20	protein_coding	exon	92810	93748	.	-	.	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000029622"; gene_name "Olr1668"; p_id "P5423"; transcript_id "ENSRNOT00000047483"; transcript_name "Olr1668"; tss_id "TSS17091";
-chr20	protein_coding	stop_codon	92810	92812	.	-	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000029622"; gene_name "Olr1668"; p_id "P5423"; transcript_id "ENSRNOT00000047483"; transcript_name "Olr1668"; tss_id "TSS17091";
-chr20	protein_coding	CDS	92813	93748	.	-	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000029622"; gene_name "Olr1668"; p_id "P5423"; protein_id "ENSRNOP00000042115"; transcript_id "ENSRNOT00000047483"; transcript_name "Olr1668"; tss_id "TSS17091";
-chr20	protein_coding	start_codon	93746	93748	.	-	0	exon_number "1"; gene_biotype "protein_coding"; gene_id "ENSRNOG00000029622"; gene_name "Olr1668"; p_id "P5423"; transcript_id "ENSRNOT00000047483"; transcript_name "Olr1668"; tss_id "TSS17091";
Binary file test-data/rn4chr20test1.bam has changed
Binary file test-data/rn4chr20test1.bam.bai has changed
Binary file test-data/rn4chr20test2.bam has changed
Binary file test-data/rn4chr20test2.bam.bai has changed
--- a/tool_dependencies.xml	Sat Mar 28 22:56:41 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,35 +0,0 @@
-<?xml version="1.0"?>
-<tool_dependency>
-    <package name="pysam" version="0.7.6">
-        <repository changeset_revision="247e5e5bee87" name="package_pysam_0_7_6" owner="iuc" prior_installation_required="True" toolshed="https://testtoolshed.g2.bx.psu.edu" />
-    </package>
-    <package name="matplotlib" version="1.2.1">
-        <repository changeset_revision="9f3e58477115" name="package_matplotlib_1_2" owner="iuc" prior_installation_required="True" toolshed="https://testtoolshed.g2.bx.psu.edu" />
-    </package>
-    <package name="htseq" version="0.5.4p3">
-        <install version="1.0">
-            <actions>
-                <action type="download_by_url">https://pypi.python.org/packages/source/H/HTSeq/HTSeq-0.6.1.tar.gz</action>
-                <action type="set_environment_for_install">
-                        <repository changeset_revision="247e5e5bee87" name="package_pysam_0_7_6" owner="iuc" toolshed="https://testtoolshed.g2.bx.psu.edu">
-                            <package name="pysam" version="0.7.6" />
-                        </repository>
-                        <repository changeset_revision="9f3e58477115" name="package_matplotlib_1_2" owner="iuc" toolshed="https://testtoolshed.g2.bx.psu.edu">
-                            <package name="matplotlib" version="1.2.1" />
-                        </repository>
-                </action>
-                <action type="make_directory">$INSTALL_DIR/lib/python</action> <!-- Not sure why these must be made apriori, but install fails otherwise -->
-                <action type="make_directory">$INSTALL_DIR/lib64/python</action> <!-- Not sure why these must be made apriori, but install fails otherwise -->
-                <action type="shell_command">export PYTHONPATH=$PYTHONPATH:$INSTALL_DIR/lib/python:$INSTALL_DIR/lib64/python &amp;&amp; python setup.py install --home $INSTALL_DIR --install-scripts $INSTALL_DIR/bin</action>
-                <action type="set_environment">
-                    <environment_variable action="append_to" name="PYTHONPATH">$INSTALL_DIR/lib/python:$INSTALL_DIR/lib64/python</environment_variable>
-                    <environment_variable action="prepend_to" name="PATH">$INSTALL_DIR/bin</environment_variable>
-                </action>
-            </actions>
-        </install>
-        <readme>
-            Installation of HTSeq requires Python 2.5+ (does not yet work with Python 3), pysam and the Numpy Python package. 
-            Note this uses the matplotlib lite version dependent on the lite version of numpy - no atlas compilation 
-        </readme>
-    </package>
-</tool_dependency>