77
+ − 1 <tool id="rgDifferentialCount" name="Differential_Count" version="0.22">
61
+ − 2 <description>models using BioConductor packages</description>
+ − 3 <requirements>
+ − 4 <requirement type="package" version="2.14">biocbasics</requirement>
+ − 5 <requirement type="package" version="3.0.2">r302</requirement>
+ − 6 <requirement type="package" version="1.3.18">graphicsmagick</requirement>
77
+ − 7 <requirement type="package" version="9.07">ghostscript</requirement>
61
+ − 8 </requirements>
+ − 9
+ − 10 <command interpreter="python">
+ − 11 rgToolFactory.py --script_path "$runme" --interpreter "Rscript" --tool_name "DifferentialCounts"
+ − 12 --output_dir "$html_file.files_path" --output_html "$html_file" --make_HTML "yes"
+ − 13 </command>
+ − 14 <inputs>
+ − 15 <param name="input1" type="data" format="tabular" label="Select an input matrix - rows are contigs, columns are counts for each sample"
+ − 16 help="Use the HTSeq based count matrix preparation tool to create these matrices from BAM/SAM files and a GTF file of genomic features"/>
+ − 17 <param name="title" type="text" value="Differential Counts" size="80" label="Title for job outputs"
+ − 18 help="Supply a meaningful name here to remind you what the outputs contain">
+ − 19 <sanitizer invalid_char="">
+ − 20 <valid initial="string.letters,string.digits"><add value="_" /> </valid>
+ − 21 </sanitizer>
+ − 22 </param>
+ − 23 <param name="treatment_name" type="text" value="Treatment" size="50" label="Treatment Name"/>
+ − 24 <param name="Treat_cols" label="Select columns containing treatment." type="data_column" data_ref="input1" numerical="True"
+ − 25 multiple="true" use_header_names="true" size="120" display="checkboxes">
+ − 26 <validator type="no_options" message="Please select at least one column."/>
+ − 27 </param>
+ − 28 <param name="control_name" type="text" value="Control" size="50" label="Control Name"/>
+ − 29 <param name="Control_cols" label="Select columns containing control." type="data_column" data_ref="input1" numerical="True"
+ − 30 multiple="true" use_header_names="true" size="120" display="checkboxes" optional="true">
+ − 31 </param>
+ − 32 <param name="subjectids" type="text" optional="true" size="120" value = ""
+ − 33 label="IF SUBJECTS NOT ALL INDEPENDENT! Enter comma separated strings to indicate sample labels for (eg) pairing - must be one for every column in input"
+ − 34 help="Leave blank if no pairing, but eg if data from sample id A99 is in columns 2,4 and id C21 is in 3,5 then enter 'A99,C21,A99,C21'">
+ − 35 <sanitizer>
+ − 36 <valid initial="string.letters,string.digits"><add value="," /> </valid>
+ − 37 </sanitizer>
+ − 38 </param>
+ − 39 <param name="fQ" type="float" value="0.3" size="5" label="Non-differential contig count quantile threshold - zero to analyze all non-zero read count contigs"
+ − 40 help="May be a good or a bad idea depending on the biology and the question. EG 0.3 = sparsest 30% of contigs with at least one read are removed before analysis"/>
+ − 41 <param name="useNDF" type="boolean" truevalue="T" falsevalue="F" checked="false" size="1"
+ − 42 label="Non differential filter - remove contigs below a threshold (1 per million) for half or more samples"
+ − 43 help="May be a good or a bad idea depending on the biology and the question. This was the old default. Quantile based is available as an alternative"/>
+ − 44
+ − 45 <conditional name="edgeR">
+ − 46 <param name="doedgeR" type="select"
+ − 47 label="Run this model using edgeR"
+ − 48 help="edgeR uses a negative binomial model and seems to be powerful, even with few replicates">
+ − 49 <option value="F">Do not run edgeR</option>
+ − 50 <option value="T" selected="true">Run edgeR</option>
+ − 51 </param>
+ − 52 <when value="T">
77
+ − 53 <param name="edgeR_priordf" type="integer" value="10" size="3"
+ − 54 label="prior.df for tagwise dispersion - larger value = more squeezing of tag dispersions to common dispersion. Replaces prior.n and prior.df = prior.n * residual.df"
+ − 55 help="10 = edgeR default. Use a larger value to 'smooth' small samples. See edgeR docs and note below"/>
81
+ − 56 <param name="edgeR_robust_method" type="select" value="20" size="3"
77
+ − 57 label="Use robust dispersion method"
+ − 58 help="Use ordinary, anscombe or deviance robust deviance estimates">
+ − 59 <option value="ordinary" selected="true">Use ordinary deviance estimates</option>
+ − 60 <option value="deviance">Use robust deviance estimates</option>
+ − 61 <option value="anscombe">use Anscombe robust deviance estimates</option>
+ − 62 </param>
61
+ − 63 </when>
+ − 64 <when value="F"></when>
+ − 65 </conditional>
+ − 66 <conditional name="DESeq2">
+ − 67 <param name="doDESeq2" type="select"
+ − 68 label="Run the same model with DESeq2 and compare findings"
+ − 69 help="DESeq2 is an update to the DESeq package. It uses different assumptions and methods to edgeR">
+ − 70 <option value="F" selected="true">Do not run DESeq2</option>
+ − 71 <option value="T">Run DESeq2</option>
+ − 72 </param>
+ − 73 <when value="T">
+ − 74 <param name="DESeq_fitType" type="select">
+ − 75 <option value="parametric" selected="true">Parametric (default) fit for dispersions</option>
+ − 76 <option value="local">Local fit - this will automagically be used if parametric fit fails</option>
+ − 77 <option value="mean">Mean dispersion fit- use this if you really understand what you're doing - read the fine manual linked below in the documentation</option>
+ − 78 </param>
+ − 79 </when>
+ − 80 <when value="F"> </when>
+ − 81 </conditional>
+ − 82 <param name="doVoom" type="select"
+ − 83 label="Run the same model with Voom/limma and compare findings"
+ − 84 help="Voom uses counts per million and a precise transformation of variance so count data can be analysed using limma">
+ − 85 <option value="F" selected="true">Do not run VOOM</option>
+ − 86 <option value="T">Run VOOM</option>
+ − 87 </param>
+ − 88 <!--
+ − 89 <conditional name="camera">
+ − 90 <param name="doCamera" type="select" label="Run the edgeR implementation of Camera GSEA for up/down gene sets"
+ − 91 help="If yes, you can choose a set of genesets to test and/or supply a gmt format geneset collection from your history">
+ − 92 <option value="F" selected="true">Do not run GSEA tests with the Camera algorithm</option>
+ − 93 <option value="T">Run GSEA tests with the Camera algorithm</option>
+ − 94 </param>
+ − 95 <when value="T">
+ − 96 <conditional name="gmtSource">
+ − 97 <param name="refgmtSource" type="select"
+ − 98 label="Use a gene set (.gmt) from your history and/or use a built-in (MSigDB etc) gene set">
+ − 99 <option value="indexed" selected="true">Use a built-in gene set</option>
+ − 100 <option value="history">Use a gene set from my history</option>
+ − 101 <option value="both">Add a gene set from my history to a built in gene set</option>
+ − 102 </param>
+ − 103 <when value="indexed">
+ − 104 <param name="builtinGMT" type="select" label="Select a gene set matrix (.gmt) file to use for the analysis">
+ − 105 <options from_data_table="gseaGMT_3.1">
+ − 106 <filter type="sort_by" column="2" />
+ − 107 <validator type="no_options" message="No GMT v3.1 files are available - please install them"/>
+ − 108 </options>
+ − 109 </param>
+ − 110 </when>
+ − 111 <when value="history">
+ − 112 <param name="ownGMT" type="data" format="gmt" label="Select a Gene Set from your history" />
+ − 113 </when>
+ − 114 <when value="both">
+ − 115 <param name="ownGMT" type="data" format="gseagmt" label="Select a Gene Set from your history" />
+ − 116 <param name="builtinGMT" type="select" label="Select a gene set matrix (.gmt) file to use for the analysis">
+ − 117 <options from_data_table="gseaGMT_4">
+ − 118 <filter type="sort_by" column="2" />
+ − 119 <validator type="no_options" message="No GMT v4 files are available - please fix tool_data_table and loc files"/>
+ − 120 </options>
+ − 121 </param>
+ − 122 </when>
+ − 123 </conditional>
+ − 124 </when>
+ − 125 <when value="F">
+ − 126 </when>
+ − 127 </conditional>
+ − 128 -->
+ − 129 <param name="fdrthresh" type="float" value="0.05" size="5" label="P value threshold for FDR filtering for amily wise error rate control"
+ − 130 help="Conventional default value of 0.05 recommended"/>
+ − 131 <param name="fdrtype" type="select" label="FDR (Type II error) control method"
+ − 132 help="Use fdr or bh typically to control for the number of tests in a reliable way">
+ − 133 <option value="fdr" selected="true">fdr</option>
+ − 134 <option value="BH">Benjamini Hochberg</option>
+ − 135 <option value="BY">Benjamini Yukateli</option>
+ − 136 <option value="bonferroni">Bonferroni</option>
+ − 137 <option value="hochberg">Hochberg</option>
+ − 138 <option value="holm">Holm</option>
+ − 139 <option value="hommel">Hommel</option>
+ − 140 <option value="none">no control for multiple tests</option>
+ − 141 </param>
+ − 142 </inputs>
+ − 143 <outputs>
+ − 144 <data format="tabular" name="out_edgeR" label="${title}_topTable_edgeR.xls">
+ − 145 <filter>edgeR['doedgeR'] == "T"</filter>
+ − 146 </data>
+ − 147 <data format="tabular" name="out_DESeq2" label="${title}_topTable_DESeq2.xls">
+ − 148 <filter>DESeq2['doDESeq2'] == "T"</filter>
+ − 149 </data>
+ − 150 <data format="tabular" name="out_VOOM" label="${title}_topTable_VOOM.xls">
+ − 151 <filter>doVoom == "T"</filter>
+ − 152 </data>
+ − 153 <data format="html" name="html_file" label="${title}.html"/>
+ − 154 </outputs>
+ − 155 <stdio>
+ − 156 <exit_code range="4" level="fatal" description="Number of subject ids must match total number of samples in the input matrix" />
+ − 157 </stdio>
+ − 158 <tests>
+ − 159 <test>
+ − 160 <param name='input1' value='test_bams2mx.xls' ftype='tabular' />
+ − 161 <param name='treatment_name' value='liver' />
+ − 162 <param name='title' value='edgeRtest' />
+ − 163 <param name='useNDF' value='' />
+ − 164 <param name='doedgeR' value='T' />
+ − 165 <param name='doVoom' value='T' />
+ − 166 <param name='doDESeq2' value='T' />
+ − 167 <param name='fdrtype' value='fdr' />
+ − 168 <param name='edgeR_priordf' value="8" />
77
+ − 169 <param name='edgeR_robust' value="ordinary" />
61
+ − 170 <param name='fdrthresh' value="0.05" />
+ − 171 <param name='control_name' value='heart' />
+ − 172 <param name='subjectids' value='' />
+ − 173 <param name='Control_cols' value='3,4,5,9' />
+ − 174 <param name='Treat_cols' value='2,6,7,8' />
+ − 175 <output name='out_edgeR' file='edgeRtest1out.xls' compare='diff' />
+ − 176 <output name='html_file' file='edgeRtest1out.html' compare='diff' lines_diff='20' />
+ − 177 </test>
+ − 178 </tests>
+ − 179
+ − 180 <configfiles>
+ − 181 <configfile name="runme">
+ − 182 <![CDATA[
+ − 183 #
+ − 184 # edgeR.Rscript
77
+ − 185 # updated feb 2014 adding outlier-robust deviance estimate options by ross for R 3.0.2/bioc 2.13
61
+ − 186 # updated npv 2011 for R 2.14.0 and edgeR 2.4.0 by ross
+ − 187 # Performs DGE on a count table containing n replicates of two conditions
+ − 188 #
+ − 189 # Parameters
+ − 190 #
+ − 191 # 1 - Output Dir
+ − 192
+ − 193 # Original edgeR code by: S.Lunke and A.Kaspi
+ − 194 reallybig = log10(.Machine\$double.xmax)
+ − 195 reallysmall = log10(.Machine\$double.xmin)
+ − 196 library('stringr')
+ − 197 library('gplots')
+ − 198 library('edgeR')
+ − 199 hmap2 = function(cmat,nsamp=100,outpdfname='heatmap2.pdf', TName='Treatment',group=NA,myTitle='title goes here')
+ − 200 {
+ − 201 # Perform clustering for significant pvalues after controlling FWER
+ − 202 samples = colnames(cmat)
+ − 203 gu = unique(group)
+ − 204 gn = rownames(cmat)
+ − 205 if (length(gu) == 2) {
+ − 206 col.map = function(g) {if (g==gu[1]) "#FF0000" else "#0000FF"}
+ − 207 pcols = unlist(lapply(group,col.map))
+ − 208 } else {
+ − 209 colours = rainbow(length(gu),start=0,end=4/6)
+ − 210 pcols = colours[match(group,gu)] }
+ − 211 dm = cmat[(! is.na(gn)),]
+ − 212 # remove unlabelled hm rows
+ − 213 nprobes = nrow(dm)
+ − 214 # sub = paste('Showing',nprobes,'contigs ranked for evidence of differential abundance')
+ − 215 if (nprobes > nsamp) {
+ − 216 dm =dm[1:nsamp,]
+ − 217 #sub = paste('Showing',nsamp,'contigs ranked for evidence for differential abundance out of',nprobes,'total')
+ − 218 }
+ − 219 newcolnames = substr(colnames(dm),1,20)
+ − 220 colnames(dm) = newcolnames
+ − 221 pdf(outpdfname)
+ − 222 heatmap.2(dm,main=myTitle,ColSideColors=pcols,col=topo.colors(100),dendrogram="col",key=T,density.info='none',
+ − 223 Rowv=F,scale='row',trace='none',margins=c(8,8),cexRow=0.4,cexCol=0.5)
+ − 224 dev.off()
+ − 225 }
+ − 226
+ − 227 hmap = function(cmat,nmeans=4,outpdfname="heatMap.pdf",nsamp=250,TName='Treatment',group=NA,myTitle="Title goes here")
+ − 228 {
+ − 229 # for 2 groups only was
+ − 230 #col.map = function(g) {if (g==TName) "#FF0000" else "#0000FF"}
+ − 231 #pcols = unlist(lapply(group,col.map))
+ − 232 gu = unique(group)
+ − 233 colours = rainbow(length(gu),start=0.3,end=0.6)
+ − 234 pcols = colours[match(group,gu)]
+ − 235 nrows = nrow(cmat)
+ − 236 mtitle = paste(myTitle,'Heatmap: n contigs =',nrows)
+ − 237 if (nrows > nsamp) {
+ − 238 cmat = cmat[c(1:nsamp),]
+ − 239 mtitle = paste('Heatmap: Top ',nsamp,' DE contigs (of ',nrows,')',sep='')
+ − 240 }
+ − 241 newcolnames = substr(colnames(cmat),1,20)
+ − 242 colnames(cmat) = newcolnames
+ − 243 pdf(outpdfname)
+ − 244 heatmap(cmat,scale='row',main=mtitle,cexRow=0.3,cexCol=0.4,Rowv=NA,ColSideColors=pcols)
+ − 245 dev.off()
+ − 246 }
+ − 247
+ − 248 qqPlot = function(descr='qqplot',pvector, outpdf='qqplot.pdf',...)
+ − 249 # stolen from https://gist.github.com/703512
+ − 250 {
+ − 251 o = -log10(sort(pvector,decreasing=F))
+ − 252 e = -log10( 1:length(o)/length(o) )
+ − 253 o[o==-Inf] = reallysmall
+ − 254 o[o==Inf] = reallybig
+ − 255 maint = descr
+ − 256 pdf(outpdf)
+ − 257 plot(e,o,pch=19,cex=1, main=maint, ...,
+ − 258 xlab=expression(Expected~~-log[10](italic(p))),
+ − 259 ylab=expression(Observed~~-log[10](italic(p))),
+ − 260 xlim=c(0,max(e)), ylim=c(0,max(o)))
+ − 261 lines(e,e,col="red")
+ − 262 grid(col = "lightgray", lty = "dotted")
+ − 263 dev.off()
+ − 264 }
+ − 265
+ − 266 smearPlot = function(DGEList,deTags, outSmear, outMain)
+ − 267 {
+ − 268 pdf(outSmear)
+ − 269 plotSmear(DGEList,de.tags=deTags,main=outMain)
+ − 270 grid(col="lightgray", lty="dotted")
+ − 271 dev.off()
+ − 272 }
+ − 273
+ − 274 boxPlot = function(rawrs,cleanrs,maint,myTitle,pdfname)
+ − 275 { #
+ − 276 nc = ncol(rawrs)
+ − 277 for (i in c(1:nc)) {rawrs[(rawrs[,i] < 0),i] = NA}
+ − 278 fullnames = colnames(rawrs)
+ − 279 newcolnames = substr(colnames(rawrs),1,20)
+ − 280 colnames(rawrs) = newcolnames
+ − 281 newcolnames = substr(colnames(cleanrs),1,20)
+ − 282 colnames(cleanrs) = newcolnames
+ − 283 defpar = par(no.readonly=T)
+ − 284 print.noquote('raw contig counts by sample:')
+ − 285 print.noquote(summary(rawrs))
+ − 286 print.noquote('normalised contig counts by sample:')
+ − 287 print.noquote(summary(cleanrs))
+ − 288 pdf(pdfname)
+ − 289 par(mfrow=c(1,2))
+ − 290 boxplot(rawrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('Raw:',maint))
+ − 291 grid(col="lightgray",lty="dotted")
+ − 292 boxplot(cleanrs,varwidth=T,notch=T,ylab='log contig count',col="maroon",las=3,cex.axis=0.35,main=paste('After ',maint))
+ − 293 grid(col="lightgray",lty="dotted")
+ − 294 dev.off()
+ − 295 pdfname = "sample_counts_histogram.pdf"
+ − 296 nc = ncol(rawrs)
+ − 297 print.noquote(paste('Using ncol rawrs=',nc))
+ − 298 ncroot = round(sqrt(nc))
+ − 299 if (ncroot*ncroot < nc) { ncroot = ncroot + 1 }
+ − 300 m = c()
+ − 301 for (i in c(1:nc)) {
+ − 302 rhist = hist(rawrs[,i],breaks=100,plot=F)
+ − 303 m = append(m,max(rhist\$counts))
+ − 304 }
+ − 305 ymax = max(m)
+ − 306 ncols = length(fullnames)
+ − 307 if (ncols > 20)
+ − 308 {
+ − 309 scale = 7*ncols/20
+ − 310 pdf(pdfname,width=scale,height=scale)
+ − 311 } else {
+ − 312 pdf(pdfname)
+ − 313 }
+ − 314 par(mfrow=c(ncroot,ncroot))
+ − 315 for (i in c(1:nc)) {
+ − 316 hist(rawrs[,i], main=paste("Contig logcount",i), xlab='log raw count', col="maroon",
+ − 317 breaks=100,sub=fullnames[i],cex=0.8,ylim=c(0,ymax))
+ − 318 }
+ − 319 dev.off()
+ − 320 par(defpar)
+ − 321
+ − 322 }
+ − 323
+ − 324 cumPlot = function(rawrs,cleanrs,maint,myTitle)
+ − 325 { # updated to use ecdf
+ − 326 pdfname = "Filtering_rowsum_bar_charts.pdf"
+ − 327 defpar = par(no.readonly=T)
+ − 328 lrs = log(rawrs,10)
+ − 329 lim = max(lrs)
+ − 330 pdf(pdfname)
+ − 331 par(mfrow=c(2,1))
+ − 332 hist(lrs,breaks=100,main=paste('Before:',maint),xlab="# Reads (log)",
+ − 333 ylab="Count",col="maroon",sub=myTitle, xlim=c(0,lim),las=1)
+ − 334 grid(col="lightgray", lty="dotted")
+ − 335 lrs = log(cleanrs,10)
+ − 336 hist(lrs,breaks=100,main=paste('After:',maint),xlab="# Reads (log)",
+ − 337 ylab="Count",col="maroon",sub=myTitle,xlim=c(0,lim),las=1)
+ − 338 grid(col="lightgray", lty="dotted")
+ − 339 dev.off()
+ − 340 par(defpar)
+ − 341 }
+ − 342
+ − 343 cumPlot1 = function(rawrs,cleanrs,maint,myTitle)
+ − 344 { # updated to use ecdf
+ − 345 pdfname = paste(gsub(" ","", myTitle , fixed=TRUE),"RowsumCum.pdf",sep='_')
+ − 346 pdf(pdfname)
+ − 347 par(mfrow=c(2,1))
+ − 348 lastx = max(rawrs)
+ − 349 rawe = knots(ecdf(rawrs))
+ − 350 cleane = knots(ecdf(cleanrs))
+ − 351 cy = 1:length(cleane)/length(cleane)
+ − 352 ry = 1:length(rawe)/length(rawe)
+ − 353 plot(rawe,ry,type='l',main=paste('Before',maint),xlab="Log Contig Total Reads",
+ − 354 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle)
+ − 355 grid(col="blue")
+ − 356 plot(cleane,cy,type='l',main=paste('After',maint),xlab="Log Contig Total Reads",
+ − 357 ylab="Cumulative proportion",col="maroon",log='x',xlim=c(1,lastx),sub=myTitle)
+ − 358 grid(col="blue")
+ − 359 dev.off()
+ − 360 }
+ − 361
+ − 362
+ − 363
+ − 364 doGSEAold = function(y=NULL,design=NULL,histgmt="",
+ − 365 bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt",
+ − 366 ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH")
+ − 367 {
+ − 368 sink('Camera.log')
+ − 369 genesets = c()
+ − 370 if (bigmt > "")
+ − 371 {
+ − 372 bigenesets = readLines(bigmt)
+ − 373 genesets = bigenesets
+ − 374 }
+ − 375 if (histgmt > "")
+ − 376 {
+ − 377 hgenesets = readLines(histgmt)
+ − 378 if (bigmt > "") {
+ − 379 genesets = rbind(genesets,hgenesets)
+ − 380 } else {
+ − 381 genesets = hgenesets
+ − 382 } # use only history if no bi
+ − 383 }
+ − 384 print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt))
+ − 385 genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n
+ − 386 outf = outfname
+ − 387 head=paste(myTitle,'edgeR GSEA')
+ − 388 write(head,file=outfname,append=F)
+ − 389 ntest=length(genesets)
+ − 390 urownames = toupper(rownames(y))
+ − 391 upcam = c()
+ − 392 downcam = c()
+ − 393 for (i in 1:ntest) {
+ − 394 gs = unlist(genesets[i])
+ − 395 g = gs[1] # geneset_id
+ − 396 u = gs[2]
+ − 397 if (u > "") { u = paste("<a href=\'",u,"\'>",u,"</a>",sep="") }
+ − 398 glist = gs[3:length(gs)] # member gene symbols
+ − 399 glist = toupper(glist)
+ − 400 inglist = urownames %in% glist
+ − 401 nin = sum(inglist)
+ − 402 if ((nin > minnin) && (nin < maxnin)) {
+ − 403 ### print(paste('@@found',sum(inglist),'genes in glist'))
+ − 404 camres = camera(y=y,index=inglist,design=design)
+ − 405 if (! is.null(camres)) {
+ − 406 rownames(camres) = g # gene set name
+ − 407 camres = cbind(GeneSet=g,URL=u,camres)
+ − 408 if (camres\$Direction == "Up")
+ − 409 {
+ − 410 upcam = rbind(upcam,camres) } else {
+ − 411 downcam = rbind(downcam,camres)
+ − 412 }
+ − 413 }
+ − 414 }
+ − 415 }
+ − 416 uscam = upcam[order(upcam\$PValue),]
+ − 417 unadjp = uscam\$PValue
+ − 418 uscam\$adjPValue = p.adjust(unadjp,method=fdrtype)
+ − 419 nup = max(10,sum((uscam\$adjPValue < fdrthresh)))
+ − 420 dscam = downcam[order(downcam\$PValue),]
+ − 421 unadjp = dscam\$PValue
+ − 422 dscam\$adjPValue = p.adjust(unadjp,method=fdrtype)
+ − 423 ndown = max(10,sum((dscam\$adjPValue < fdrthresh)))
+ − 424 write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F)
+ − 425 write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F)
+ − 426 print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:'))
+ − 427 write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F)
+ − 428 print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:'))
+ − 429 write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F)
+ − 430 sink()
+ − 431 }
+ − 432
+ − 433
+ − 434
+ − 435
+ − 436 doGSEA = function(y=NULL,design=NULL,histgmt="",
+ − 437 bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt",
+ − 438 ntest=0, myTitle="myTitle", outfname="GSEA.xls", minnin=5, maxnin=2000,fdrthresh=0.05,fdrtype="BH")
+ − 439 {
+ − 440 sink('Camera.log')
+ − 441 genesets = c()
+ − 442 if (bigmt > "")
+ − 443 {
+ − 444 bigenesets = readLines(bigmt)
+ − 445 genesets = bigenesets
+ − 446 }
+ − 447 if (histgmt > "")
+ − 448 {
+ − 449 hgenesets = readLines(histgmt)
+ − 450 if (bigmt > "") {
+ − 451 genesets = rbind(genesets,hgenesets)
+ − 452 } else {
+ − 453 genesets = hgenesets
+ − 454 } # use only history if no bi
+ − 455 }
+ − 456 print.noquote(paste("@@@read",length(genesets), 'genesets from',histgmt,bigmt))
+ − 457 genesets = strsplit(genesets,'\t') # tabular. genesetid\tURLorwhatever\tgene_1\t..\tgene_n
+ − 458 outf = outfname
+ − 459 head=paste(myTitle,'edgeR GSEA')
+ − 460 write(head,file=outfname,append=F)
+ − 461 ntest=length(genesets)
+ − 462 urownames = toupper(rownames(y))
+ − 463 upcam = c()
+ − 464 downcam = c()
+ − 465 incam = c()
+ − 466 urls = c()
+ − 467 gsids = c()
+ − 468 for (i in 1:ntest) {
+ − 469 gs = unlist(genesets[i])
+ − 470 gsid = gs[1] # geneset_id
+ − 471 url = gs[2]
+ − 472 if (url > "") { url = paste("<a href=\'",url,"\'>",url,"</a>",sep="") }
+ − 473 glist = gs[3:length(gs)] # member gene symbols
+ − 474 glist = toupper(glist)
+ − 475 inglist = urownames %in% glist
+ − 476 nin = sum(inglist)
+ − 477 if ((nin > minnin) && (nin < maxnin)) {
+ − 478 incam = c(incam,inglist)
+ − 479 gsids = c(gsids,gsid)
+ − 480 urls = c(urls,url)
+ − 481 }
+ − 482 }
+ − 483 incam = as.list(incam)
+ − 484 names(incam) = gsids
+ − 485 allcam = camera(y=y,index=incam,design=design)
+ − 486 allcamres = cbind(geneset=gsids,allcam,URL=urls)
+ − 487 for (i in 1:ntest) {
+ − 488 camres = allcamres[i]
+ − 489 res = try(test = (camres\$Direction == "Up"))
+ − 490 if ("try-error" %in% class(res)) {
+ − 491 cat("test failed, camres = :")
+ − 492 print.noquote(camres)
+ − 493 } else { if (camres\$Direction == "Up")
+ − 494 { upcam = rbind(upcam,camres)
+ − 495 } else { downcam = rbind(downcam,camres)
+ − 496 }
+ − 497
+ − 498 }
+ − 499 }
+ − 500 uscam = upcam[order(upcam\$PValue),]
+ − 501 unadjp = uscam\$PValue
+ − 502 uscam\$adjPValue = p.adjust(unadjp,method=fdrtype)
+ − 503 nup = max(10,sum((uscam\$adjPValue < fdrthresh)))
+ − 504 dscam = downcam[order(downcam\$PValue),]
+ − 505 unadjp = dscam\$PValue
+ − 506 dscam\$adjPValue = p.adjust(unadjp,method=fdrtype)
+ − 507 ndown = max(10,sum((dscam\$adjPValue < fdrthresh)))
+ − 508 write.table(uscam,file=paste('camera_up',outfname,sep='_'),quote=F,sep='\t',row.names=F)
+ − 509 write.table(dscam,file=paste('camera_down',outfname,sep='_'),quote=F,sep='\t',row.names=F)
+ − 510 print.noquote(paste('@@@@@ Camera up top',nup,'gene sets:'))
+ − 511 write.table(head(uscam,nup),file="",quote=F,sep='\t',row.names=F)
+ − 512 print.noquote(paste('@@@@@ Camera down top',ndown,'gene sets:'))
+ − 513 write.table(head(dscam,ndown),file="",quote=F,sep='\t',row.names=F)
+ − 514 sink()
+ − 515 }
+ − 516
+ − 517
+ − 518 edgeIt = function (Count_Matrix=c(),group=c(),out_edgeR=F,out_VOOM=F,out_DESeq2=F,fdrtype='fdr',priordf=5,
+ − 519 fdrthresh=0.05,outputdir='.', myTitle='Differential Counts',libSize=c(),useNDF=F,
+ − 520 filterquantile=0.2, subjects=c(),mydesign=NULL,
+ − 521 doDESeq2=T,doVoom=T,doCamera=T,doedgeR=T,org='hg19',
+ − 522 histgmt="", bigmt="/data/genomes/gsea/3.1/Abetterchoice_nocgp_c2_c3_c5_symbols_all.gmt",
81
+ − 523 doCook=F,DESeq_fitType="parameteric",robust_meth='ordinary')
61
+ − 524 {
+ − 525 # Error handling
+ − 526 if (length(unique(group))!=2){
+ − 527 print("Number of conditions identified in experiment does not equal 2")
+ − 528 q()
+ − 529 }
+ − 530 require(edgeR)
+ − 531 options(width = 512)
+ − 532 mt = paste(unlist(strsplit(myTitle,'_')),collapse=" ")
+ − 533 allN = nrow(Count_Matrix)
+ − 534 nscut = round(ncol(Count_Matrix)/2)
+ − 535 colTotmillionreads = colSums(Count_Matrix)/1e6
+ − 536 counts.dataframe = as.data.frame(c())
+ − 537 rawrs = rowSums(Count_Matrix)
+ − 538 nonzerod = Count_Matrix[(rawrs > 0),] # remove all zero count genes
+ − 539 nzN = nrow(nonzerod)
+ − 540 nzrs = rowSums(nonzerod)
+ − 541 zN = allN - nzN
+ − 542 print('# Quantiles for non-zero row counts:',quote=F)
+ − 543 print(quantile(nzrs,probs=seq(0,1,0.1)),quote=F)
+ − 544 if (useNDF == T)
+ − 545 {
+ − 546 gt1rpin3 = rowSums(Count_Matrix/expandAsMatrix(colTotmillionreads,dim(Count_Matrix)) >= 1) >= nscut
+ − 547 lo = colSums(Count_Matrix[!gt1rpin3,])
+ − 548 workCM = Count_Matrix[gt1rpin3,]
+ − 549 cleanrs = rowSums(workCM)
+ − 550 cleanN = length(cleanrs)
+ − 551 meth = paste( "After removing",length(lo),"contigs with fewer than ",nscut," sample read counts >= 1 per million, there are",sep="")
+ − 552 print(paste("Read",allN,"contigs. Removed",zN,"contigs with no reads.",meth,cleanN,"contigs"),quote=F)
+ − 553 maint = paste('Filter >=1/million reads in >=',nscut,'samples')
+ − 554 } else {
+ − 555 useme = (nzrs > quantile(nzrs,filterquantile))
+ − 556 workCM = nonzerod[useme,]
+ − 557 lo = colSums(nonzerod[!useme,])
+ − 558 cleanrs = rowSums(workCM)
+ − 559 cleanN = length(cleanrs)
+ − 560 meth = paste("After filtering at count quantile =",filterquantile,", there are",sep="")
+ − 561 print(paste('Read',allN,"contigs. Removed",zN,"with no reads.",meth,cleanN,"contigs"),quote=F)
+ − 562 maint = paste('Filter below',filterquantile,'quantile')
+ − 563 }
+ − 564 cumPlot(rawrs=rawrs,cleanrs=cleanrs,maint=maint,myTitle=myTitle)
+ − 565 allgenes = rownames(workCM)
+ − 566 reg = "^chr([0-9]+):([0-9]+)-([0-9]+)"
+ − 567 genecards="<a href=\'http://www.genecards.org/index.php?path=/Search/keyword/"
+ − 568 ucsc = paste("<a href=\'http://genome.ucsc.edu/cgi-bin/hgTracks?db=",org,sep='')
+ − 569 testreg = str_match(allgenes,reg)
+ − 570 if (sum(!is.na(testreg[,1]))/length(testreg[,1]) > 0.8) # is ucsc style string
+ − 571 {
+ − 572 print("@@ using ucsc substitution for urls")
+ − 573 contigurls = paste0(ucsc,"&position=chr",testreg[,2],":",testreg[,3],"-",testreg[,4],"\'>",allgenes,"</a>")
+ − 574 } else {
+ − 575 print("@@ using genecards substitution for urls")
+ − 576 contigurls = paste0(genecards,allgenes,"\'>",allgenes,"</a>")
+ − 577 }
+ − 578 print.noquote("# urls")
+ − 579 print.noquote(head(contigurls))
+ − 580 print(paste("# Total low count contigs per sample = ",paste(lo,collapse=',')),quote=F)
+ − 581 cmrowsums = rowSums(workCM)
+ − 582 TName=unique(group)[1]
+ − 583 CName=unique(group)[2]
+ − 584 if (is.null(mydesign)) {
+ − 585 if (length(subjects) == 0)
+ − 586 {
+ − 587 mydesign = model.matrix(~group)
+ − 588 }
+ − 589 else {
+ − 590 subjf = factor(subjects)
+ − 591 mydesign = model.matrix(~subjf+group) # we block on subject so make group last to simplify finding it
+ − 592 }
+ − 593 }
+ − 594 print.noquote(paste('Using samples:',paste(colnames(workCM),collapse=',')))
+ − 595 print.noquote('Using design matrix:')
+ − 596 print.noquote(mydesign)
80
+ − 597 if (doedgeR == T) {
61
+ − 598 sink('edgeR.log')
+ − 599 #### Setup DGEList object
+ − 600 DGEList = DGEList(counts=workCM, group = group)
+ − 601 DGEList = calcNormFactors(DGEList)
77
+ − 602 if (robust_meth == 'ordinary') {
+ − 603 DGEList = estimateGLMCommonDisp(DGEList,mydesign)
+ − 604 DGEList = estimateGLMTrendedDisp(DGEList,mydesign)
+ − 605 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign,prior.df = edgeR_priordf)
61
+ − 606
77
+ − 607 comdisp = DGEList\$common.dispersion
+ − 608 estpriorn = getPriorN(DGEList)
+ − 609 print(paste("Common Dispersion =",comdisp,"CV = ",sqrt(comdisp),"getPriorN = ",estpriorn),quote=F)
+ − 610 } else {
80
+ − 611 DGEList = estimateGLMRobustDisp(DGEList,design=mydesign, prior.df = edgeR_priordf, maxit = 6, residual.type = robust_meth)
77
+ − 612 }
80
+ − 613
+ − 614
61
+ − 615 DGLM = glmFit(DGEList,design=mydesign)
+ − 616 DE = glmLRT(DGLM,coef=ncol(DGLM\$design)) # always last one - subject is first if needed
+ − 617 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors
+ − 618 normData = (1e+06*DGEList\$counts/efflib)
+ − 619 uoutput = cbind(
+ − 620 Name=as.character(rownames(DGEList\$counts)),
+ − 621 DE\$table,
+ − 622 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype),
+ − 623 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums,normData,
+ − 624 DGEList\$counts
+ − 625 )
+ − 626 soutput = uoutput[order(DE\$table\$PValue),] # sorted into p value order - for quick toptable
+ − 627 goodness = gof(DGLM, pcutoff=fdrthresh)
+ − 628 if (sum(goodness\$outlier) > 0) {
+ − 629 print.noquote('GLM outliers:')
+ − 630 print(paste(rownames(DGLM)[(goodness\$outlier)],collapse=','),quote=F)
+ − 631 } else {
+ − 632 print('No GLM fit outlier genes found\n')
+ − 633 }
+ − 634 z = limma::zscoreGamma(goodness\$gof.statistic, shape=goodness\$df/2, scale=2)
+ − 635 pdf("edgeR_GoodnessofFit.pdf")
+ − 636 qq = qqnorm(z, panel.first=grid(), main="tagwise dispersion")
+ − 637 abline(0,1,lwd=3)
+ − 638 points(qq\$x[goodness\$outlier],qq\$y[goodness\$outlier], pch=16, col="maroon")
+ − 639 dev.off()
+ − 640 efflib = DGEList\$samples\$lib.size*DGEList\$samples\$norm.factors
+ − 641 normData = (1e+06*DGEList\$counts/efflib)
+ − 642 uniqueg = unique(group)
+ − 643 #### Plot MDS
+ − 644 sample_colors = match(group,levels(group))
+ − 645 sampleTypes = levels(factor(group))
+ − 646 print.noquote(sampleTypes)
+ − 647 pdf("edgeR_MDSplot.pdf")
+ − 648 plotMDS.DGEList(DGEList,main=paste("edgeR MDS for",myTitle),cex=0.5,col=sample_colors,pch=sample_colors)
+ − 649 legend(x="topleft", legend = sampleTypes,col=c(1:length(sampleTypes)), pch=19)
+ − 650 grid(col="blue")
+ − 651 dev.off()
+ − 652 colnames(normData) = paste( colnames(normData),'N',sep="_")
+ − 653 print(paste('Raw sample read totals',paste(colSums(nonzerod,na.rm=T),collapse=',')))
+ − 654 nzd = data.frame(log(nonzerod + 1e-2,10))
+ − 655 try( boxPlot(rawrs=nzd,cleanrs=log(normData,10),maint='TMM Normalisation',myTitle=myTitle,pdfname="edgeR_raw_norm_counts_box.pdf") )
+ − 656 write.table(soutput,file=out_edgeR, quote=FALSE, sep="\t",row.names=F)
+ − 657 tt = cbind(
+ − 658 Name=as.character(rownames(DGEList\$counts)),
+ − 659 DE\$table,
+ − 660 adj.p.value=p.adjust(DE\$table\$PValue, method=fdrtype),
+ − 661 Dispersion=DGEList\$tagwise.dispersion,totreads=cmrowsums
+ − 662 )
+ − 663 print.noquote("# edgeR Top tags\n")
+ − 664 tt = cbind(tt,URL=contigurls) # add to end so table isn't laid out strangely
+ − 665 tt = tt[order(DE\$table\$PValue),]
+ − 666 print.noquote(tt[1:50,])
+ − 667 deTags = rownames(uoutput[uoutput\$adj.p.value < fdrthresh,])
+ − 668 nsig = length(deTags)
+ − 669 print(paste('#',nsig,'tags significant at adj p=',fdrthresh),quote=F)
+ − 670 deColours = ifelse(deTags,'red','black')
+ − 671 pdf("edgeR_BCV_vs_abundance.pdf")
+ − 672 plotBCV(DGEList, cex=0.3, main="Biological CV vs abundance")
+ − 673 dev.off()
+ − 674 dg = DGEList[order(DE\$table\$PValue),]
+ − 675 #normData = (1e+06 * dg\$counts/expandAsMatrix(dg\$samples\$lib.size, dim(dg)))
+ − 676 efflib = dg\$samples\$lib.size*dg\$samples\$norm.factors
+ − 677 normData = (1e+06*dg\$counts/efflib)
+ − 678 outpdfname="edgeR_top_100_heatmap.pdf"
+ − 679 hmap2(normData,nsamp=100,TName=TName,group=group,outpdfname=outpdfname,myTitle=paste('edgeR Heatmap',myTitle))
+ − 680 outSmear = "edgeR_smearplot.pdf"
+ − 681 outMain = paste("Smear Plot for ",TName,' Vs ',CName,' (FDR@',fdrthresh,' N = ',nsig,')',sep='')
+ − 682 smearPlot(DGEList=DGEList,deTags=deTags, outSmear=outSmear, outMain = outMain)
+ − 683 qqPlot(descr=paste(myTitle,'edgeR adj p QQ plot'),pvector=tt\$adj.p.value,outpdf='edgeR_qqplot.pdf')
+ − 684 norm.factor = DGEList\$samples\$norm.factors
+ − 685 topresults.edgeR = soutput[which(soutput\$adj.p.value < fdrthresh), ]
+ − 686 edgeRcountsindex = which(allgenes %in% rownames(topresults.edgeR))
+ − 687 edgeRcounts = rep(0, length(allgenes))
+ − 688 edgeRcounts[edgeRcountsindex] = 1 # Create venn diagram of hits
+ − 689 sink()
+ − 690 } ### doedgeR
+ − 691 if (doDESeq2 == T)
+ − 692 {
+ − 693 sink("DESeq2.log")
+ − 694 # DESeq2
+ − 695 require('DESeq2')
+ − 696 library('RColorBrewer')
+ − 697 if (length(subjects) == 0)
+ − 698 {
+ − 699 pdata = data.frame(Name=colnames(workCM),Rx=group,row.names=colnames(workCM))
+ − 700 deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ Rx))
+ − 701 } else {
+ − 702 pdata = data.frame(Name=colnames(workCM),Rx=group,subjects=subjects,row.names=colnames(workCM))
+ − 703 deSEQds = DESeqDataSetFromMatrix(countData = workCM, colData = pdata, design = formula(~ subjects + Rx))
+ − 704 }
+ − 705 #DESeq2 = DESeq(deSEQds,fitType='local',pAdjustMethod=fdrtype)
+ − 706 #rDESeq = results(DESeq2)
+ − 707 #newCountDataSet(workCM, group)
+ − 708 deSeqDatsizefac = estimateSizeFactors(deSEQds)
+ − 709 deSeqDatdisp = estimateDispersions(deSeqDatsizefac,fitType=DESeq_fitType)
77
+ − 710 resDESeq = nbinomWaldTest(deSeqDatdisp, pAdjustMethod=fdrtype)
61
+ − 711 rDESeq = as.data.frame(results(resDESeq))
+ − 712 rDESeq = cbind(Contig=rownames(workCM),rDESeq,NReads=cmrowsums,URL=contigurls)
+ − 713 srDESeq = rDESeq[order(rDESeq\$pvalue),]
+ − 714 qqPlot(descr=paste(myTitle,'DESeq2 adj p qq plot'),pvector=rDESeq\$padj,outpdf='DESeq2_qqplot.pdf')
+ − 715 cat("# DESeq top 50\n")
+ − 716 print.noquote(srDESeq[1:50,])
+ − 717 write.table(srDESeq,file=out_DESeq2, quote=FALSE, sep="\t",row.names=F)
+ − 718 topresults.DESeq = rDESeq[which(rDESeq\$padj < fdrthresh), ]
+ − 719 DESeqcountsindex = which(allgenes %in% rownames(topresults.DESeq))
+ − 720 DESeqcounts = rep(0, length(allgenes))
+ − 721 DESeqcounts[DESeqcountsindex] = 1
+ − 722 pdf("DESeq2_dispersion_estimates.pdf")
+ − 723 plotDispEsts(resDESeq)
+ − 724 dev.off()
+ − 725 ysmall = abs(min(rDESeq\$log2FoldChange))
+ − 726 ybig = abs(max(rDESeq\$log2FoldChange))
+ − 727 ylimit = min(4,ysmall,ybig)
+ − 728 pdf("DESeq2_MA_plot.pdf")
+ − 729 plotMA(resDESeq,main=paste(myTitle,"DESeq2 MA plot"),ylim=c(-ylimit,ylimit))
+ − 730 dev.off()
+ − 731 rlogres = rlogTransformation(resDESeq)
+ − 732 sampledists = dist( t( assay(rlogres) ) )
+ − 733 sdmat = as.matrix(sampledists)
+ − 734 pdf("DESeq2_sample_distance_plot.pdf")
+ − 735 heatmap.2(sdmat,trace="none",main=paste(myTitle,"DESeq2 sample distances"),
+ − 736 col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255))
+ − 737 dev.off()
+ − 738 ###outpdfname="DESeq2_top50_heatmap.pdf"
+ − 739 ###hmap2(sresDESeq,nsamp=50,TName=TName,group=group,outpdfname=outpdfname,myTitle=paste('DESeq2 vst rlog Heatmap',myTitle))
+ − 740 sink()
+ − 741 result = try( (ppca = plotPCA( varianceStabilizingTransformation(deSeqDatdisp,blind=T), intgroup=c("Rx","Name")) ) )
+ − 742 if ("try-error" %in% class(result)) {
+ − 743 print.noquote('DESeq2 plotPCA failed.')
+ − 744 } else {
+ − 745 pdf("DESeq2_PCA_plot.pdf")
+ − 746 #### wtf - print? Seems needed to get this to work
+ − 747 print(ppca)
+ − 748 dev.off()
+ − 749 }
+ − 750 }
+ − 751
+ − 752 if (doVoom == T) {
+ − 753 sink('VOOM.log')
+ − 754 if (doedgeR == F) {
+ − 755 #### Setup DGEList object
+ − 756 DGEList = DGEList(counts=workCM, group = group)
+ − 757 DGEList = estimateGLMCommonDisp(DGEList,mydesign)
+ − 758 DGEList = estimateGLMTrendedDisp(DGEList,mydesign)
+ − 759 DGEList = estimateGLMTagwiseDisp(DGEList,mydesign)
+ − 760 }
83
+ − 761 calcNormFactors(DGEList)
+ − 762 ls = colSums(DGEList\$counts) * DGEList\$samples\$norm.factors
61
+ − 763 pdf("VOOM_mean_variance_plot.pdf")
82
+ − 764 dat.voomed = voom(DGEList, mydesign, plot = TRUE, lib.size = ls)
61
+ − 765 dev.off()
+ − 766 # Use limma to fit data
+ − 767 fit = lmFit(dat.voomed, mydesign)
+ − 768 fit = eBayes(fit)
+ − 769 rvoom = topTable(fit, coef = length(colnames(mydesign)), adj = fdrtype, n = Inf, sort="none")
+ − 770 qqPlot(descr=paste(myTitle,'VOOM-limma adj p QQ plot'),pvector=rvoom\$adj.P.Val,outpdf='VOOM_qqplot.pdf')
+ − 771 rownames(rvoom) = rownames(workCM)
+ − 772 rvoom = cbind(rvoom,NReads=cmrowsums,URL=contigurls)
+ − 773 srvoom = rvoom[order(rvoom\$P.Value),]
+ − 774 cat("# VOOM top 50\n")
+ − 775 print(srvoom[1:50,])
+ − 776 write.table(srvoom,file=out_VOOM, quote=FALSE, sep="\t",row.names=F)
+ − 777 # Use an FDR cutoff to find interesting samples for edgeR, DESeq and voom/limma
+ − 778 topresults.voom = rvoom[which(rvoom\$adj.P.Val < fdrthresh), ]
+ − 779 voomcountsindex = which(allgenes %in% topresults.voom\$ID)
+ − 780 voomcounts = rep(0, length(allgenes))
+ − 781 voomcounts[voomcountsindex] = 1
+ − 782 sink()
+ − 783 }
+ − 784
+ − 785 if (doCamera) {
+ − 786 doGSEA(y=DGEList,design=mydesign,histgmt=histgmt,bigmt=bigmt,ntest=20,myTitle=myTitle,
+ − 787 outfname=paste(mt,"GSEA.xls",sep="_"),fdrthresh=fdrthresh,fdrtype=fdrtype)
+ − 788 }
+ − 789
+ − 790 if ((doDESeq2==T) || (doVoom==T) || (doedgeR==T)) {
+ − 791 if ((doVoom==T) && (doDESeq2==T) && (doedgeR==T)) {
+ − 792 vennmain = paste(mt,'Voom,edgeR and DESeq2 overlap at FDR=',fdrthresh)
+ − 793 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts,
+ − 794 VOOM_limma = voomcounts, row.names = allgenes)
+ − 795 } else if ((doDESeq2==T) && (doedgeR==T)) {
+ − 796 vennmain = paste(mt,'DESeq2 and edgeR overlap at FDR=',fdrthresh)
+ − 797 counts.dataframe = data.frame(edgeR = edgeRcounts, DESeq2 = DESeqcounts, row.names = allgenes)
+ − 798 } else if ((doVoom==T) && (doedgeR==T)) {
+ − 799 vennmain = paste(mt,'Voom and edgeR overlap at FDR=',fdrthresh)
+ − 800 counts.dataframe = data.frame(edgeR = edgeRcounts, VOOM_limma = voomcounts, row.names = allgenes)
+ − 801 }
+ − 802
+ − 803 if (nrow(counts.dataframe > 1)) {
+ − 804 counts.venn = vennCounts(counts.dataframe)
+ − 805 vennf = "Venn_significant_genes_overlap.pdf"
+ − 806 pdf(vennf)
+ − 807 vennDiagram(counts.venn,main=vennmain,col="maroon")
+ − 808 dev.off()
+ − 809 }
+ − 810 } #### doDESeq2 or doVoom
+ − 811
+ − 812 }
+ − 813 #### Done
+ − 814
+ − 815 ###sink(stdout(),append=T,type="message")
+ − 816 builtin_gmt = ""
+ − 817 history_gmt = ""
+ − 818 history_gmt_name = ""
+ − 819 out_edgeR = F
+ − 820 out_DESeq2 = F
+ − 821 out_VOOM = "$out_VOOM"
78
+ − 822 edgeR_robust_meth = "ordinary" # control robust deviance options
80
+ − 823 doDESeq2 = $DESeq2.doDESeq2
61
+ − 824 doVoom = $doVoom
+ − 825 doCamera = F
+ − 826 doedgeR = $edgeR.doedgeR
77
+ − 827 edgeR_priordf = 10
61
+ − 828
+ − 829
+ − 830 #if $doVoom == "T":
+ − 831 out_VOOM = "$out_VOOM"
+ − 832 #end if
+ − 833
+ − 834 #if $DESeq2.doDESeq2 == "T":
+ − 835 out_DESeq2 = "$out_DESeq2"
79
+ − 836 doDESeq2 = T
61
+ − 837 DESeq_fitType = "$DESeq2.DESeq_fitType"
+ − 838 #end if
+ − 839
+ − 840 #if $edgeR.doedgeR == "T":
+ − 841 out_edgeR = "$out_edgeR"
+ − 842 edgeR_priordf = $edgeR.edgeR_priordf
81
+ − 843 edgeR_robust_meth = "$edgeR.edgeR_robust_method"
61
+ − 844 #end if
+ − 845
+ − 846
+ − 847 if (sum(c(doedgeR,doVoom,doDESeq2)) == 0)
+ − 848 {
+ − 849 write("No methods chosen - nothing to do! Please try again after choosing one or more methods", stderr())
+ − 850 quit(save="no",status=2)
+ − 851 }
+ − 852
+ − 853 Out_Dir = "$html_file.files_path"
+ − 854 Input = "$input1"
+ − 855 TreatmentName = "$treatment_name"
+ − 856 TreatmentCols = "$Treat_cols"
+ − 857 ControlName = "$control_name"
+ − 858 ControlCols= "$Control_cols"
+ − 859 org = "$input1.dbkey"
+ − 860 if (org == "") { org = "hg19"}
+ − 861 fdrtype = "$fdrtype"
+ − 862 fdrthresh = $fdrthresh
+ − 863 useNDF = $useNDF
+ − 864 fQ = $fQ # non-differential centile cutoff
+ − 865 myTitle = "$title"
+ − 866 sids = strsplit("$subjectids",',')
+ − 867 subjects = unlist(sids)
+ − 868 nsubj = length(subjects)
+ − 869 TCols = as.numeric(strsplit(TreatmentCols,",")[[1]])-1
+ − 870 CCols = as.numeric(strsplit(ControlCols,",")[[1]])-1
+ − 871 cat('Got TCols=')
+ − 872 cat(TCols)
+ − 873 cat('; CCols=')
+ − 874 cat(CCols)
+ − 875 cat('\n')
+ − 876 useCols = c(TCols,CCols)
+ − 877 if (file.exists(Out_Dir) == F) dir.create(Out_Dir)
+ − 878 Count_Matrix = read.table(Input,header=T,row.names=1,sep='\t') #Load tab file assume header
+ − 879 snames = colnames(Count_Matrix)
+ − 880 nsamples = length(snames)
+ − 881 if (nsubj > 0 & nsubj != nsamples) {
+ − 882 options("show.error.messages"=T)
+ − 883 mess = paste('Fatal error: Supplied subject id list',paste(subjects,collapse=','),
+ − 884 'has length',nsubj,'but there are',nsamples,'samples',paste(snames,collapse=','))
+ − 885 write(mess, stderr())
+ − 886 quit(save="no",status=4)
+ − 887 }
+ − 888 if (length(subjects) != 0) {subjects = subjects[useCols]}
+ − 889 Count_Matrix = Count_Matrix[,useCols] ### reorder columns
+ − 890 rn = rownames(Count_Matrix)
+ − 891 islib = rn %in% c('librarySize','NotInBedRegions')
+ − 892 LibSizes = Count_Matrix[subset(rn,islib),][1] # take first
+ − 893 Count_Matrix = Count_Matrix[subset(rn,! islib),]
+ − 894 group = c(rep(TreatmentName,length(TCols)), rep(ControlName,length(CCols)) ) #Build a group descriptor
+ − 895 group = factor(group, levels=c(ControlName,TreatmentName))
+ − 896 colnames(Count_Matrix) = paste(group,colnames(Count_Matrix),sep="_") #Relable columns
+ − 897 results = edgeIt(Count_Matrix=Count_Matrix,group=group, out_edgeR=out_edgeR, out_VOOM=out_VOOM, out_DESeq2=out_DESeq2,
+ − 898 fdrtype='BH',mydesign=NULL,priordf=edgeR_priordf,fdrthresh=fdrthresh,outputdir='.',
+ − 899 myTitle=myTitle,useNDF=F,libSize=c(),filterquantile=fQ,subjects=subjects,
+ − 900 doDESeq2=doDESeq2,doVoom=doVoom,doCamera=doCamera,doedgeR=doedgeR,org=org,
81
+ − 901 histgmt=history_gmt,bigmt=builtin_gmt,DESeq_fitType=DESeq_fitType,robust_meth=edgeR_robust_meth)
61
+ − 902 sessionInfo()
+ − 903 ]]>
+ − 904 </configfile>
+ − 905 </configfiles>
+ − 906 <help>
+ − 907
+ − 908 **What it does**
+ − 909
+ − 910 Allows short read sequence counts from controlled experiments to be analysed for differentially expressed genes.
+ − 911 Optionally adds a term for subject if not all samples are independent or if some other factor needs to be blocked in the design.
+ − 912
+ − 913 **Input**
+ − 914
+ − 915 Requires a count matrix as a tabular file. These are best made using the companion HTSeq_ based counter Galaxy wrapper
+ − 916 and your fave gene model to generate inputs. Each row is a genomic feature (gene or exon eg) and each column the
+ − 917 non-negative integer count of reads from one sample overlapping the feature.
+ − 918 The matrix must have a header row uniquely identifying the source samples, and unique row names in
+ − 919 the first column. Typically the row names are gene symbols or probe ids for downstream use in GSEA and other methods.
+ − 920
+ − 921 **Specifying comparisons**
+ − 922
+ − 923 This is basically dumbed down for two factors - case vs control.
+ − 924
+ − 925 More complex interfaces are possible but painful at present.
+ − 926 Probably need to specify a phenotype file to do this better.
+ − 927 Work in progress. Send code.
+ − 928
+ − 929 If you have (eg) paired samples and wish to include a term in the GLM to account for some other factor (subject in the case of paired samples),
+ − 930 put a comma separated list of indicators for every sample (whether modelled or not!) indicating (eg) the subject number or
+ − 931 A list of integers, one for each subject or an empty string if samples are all independent.
+ − 932 If not empty, there must be exactly as many integers in the supplied integer list as there are columns (samples) in the count matrix.
+ − 933 Integers for samples that are not in the analysis *must* be present in the string as filler even if not used.
+ − 934
+ − 935 So if you have 2 pairs out of 6 samples, you need to put in unique integers for the unpaired ones
+ − 936 eg if you had 6 samples with the first two independent but the second and third pairs each being from independent subjects. you might use
+ − 937 8,9,1,1,2,2
+ − 938 as subject IDs to indicate two paired samples from the same subject in columns 3/4 and 5/6
+ − 939
+ − 940 **Methods available**
+ − 941
+ − 942 You can run 3 popular Bioconductor packages available for count data.
+ − 943
+ − 944 edgeR - see edgeR_ for details
+ − 945
+ − 946 VOOM/limma - see limma_VOOM_ for details
+ − 947
+ − 948 DESeq2 - see DESeq2_ for details
+ − 949
+ − 950 and optionally camera in edgeR which works better if MSigDB is installed.
+ − 951
+ − 952 **Outputs**
+ − 953
+ − 954 Some helpful plots and analysis results. Note that most of these are produced using R code
+ − 955 suggested by the excellent documentation and vignettes for the Bioconductor
+ − 956 packages invoked. The Tool Factory is used to automatically lay these out for you to enjoy.
+ − 957
+ − 958 **Note on Voom**
+ − 959
+ − 960 The voom from limma version 3.16.6 help in R includes this from the authors - but you should read the paper to interpret this method.
+ − 961
+ − 962 This function is intended to process RNA-Seq or ChIP-Seq data prior to linear modelling in limma.
+ − 963
+ − 964 voom is an acronym for mean-variance modelling at the observational level.
+ − 965 The key concern is to estimate the mean-variance relationship in the data, then use this to compute appropriate weights for each observation.
+ − 966 Count data almost show non-trivial mean-variance relationships. Raw counts show increasing variance with increasing count size, while log-counts typically show a decreasing mean-variance trend.
+ − 967 This function estimates the mean-variance trend for log-counts, then assigns a weight to each observation based on its predicted variance.
+ − 968 The weights are then used in the linear modelling process to adjust for heteroscedasticity.
+ − 969
+ − 970 In an experiment, a count value is observed for each tag in each sample. A tag-wise mean-variance trend is computed using lowess.
+ − 971 The tag-wise mean is the mean log2 count with an offset of 0.5, across samples for a given tag.
+ − 972 The tag-wise variance is the quarter-root-variance of normalized log2 counts per million values with an offset of 0.5, across samples for a given tag.
+ − 973 Tags with zero counts across all samples are not included in the lowess fit. Optional normalization is performed using normalizeBetweenArrays.
+ − 974 Using fitted values of log2 counts from a linear model fit by lmFit, variances from the mean-variance trend were interpolated for each observation.
+ − 975 This was carried out by approxfun. Inverse variance weights can be used to correct for mean-variance trend in the count data.
+ − 976
+ − 977
+ − 978 Author(s)
+ − 979
+ − 980 Charity Law and Gordon Smyth
+ − 981
+ − 982 References
+ − 983
+ − 984 Law, CW (2013). Precision weights for gene expression analysis. PhD Thesis. University of Melbourne, Australia.
+ − 985
+ − 986 Law, CW, Chen, Y, Shi, W, Smyth, GK (2013). Voom! Precision weights unlock linear model analysis tools for RNA-seq read counts.
+ − 987 Technical Report 1 May 2013, Bioinformatics Division, Walter and Eliza Hall Institute of Medical Reseach, Melbourne, Australia.
+ − 988 http://www.statsci.org/smyth/pubs/VoomPreprint.pdf
+ − 989
+ − 990 See Also
+ − 991
+ − 992 A voom case study is given in the edgeR User's Guide.
+ − 993
+ − 994 vooma is a similar function but for microarrays instead of RNA-seq.
+ − 995
+ − 996
+ − 997 ***old rant on changes to Bioconductor package variable names between versions***
+ − 998
+ − 999 The edgeR authors made a small cosmetic change in the name of one important variable (from p.value to PValue)
+ − 1000 breaking this and all other code that assumed the old name for this variable,
+ − 1001 between edgeR2.4.4 and 2.4.6 (the version for R 2.14 as at the time of writing).
+ − 1002 This means that all code using edgeR is sensitive to the version. I think this was a very unwise thing
+ − 1003 to do because it wasted hours of my time to track down and will similarly cost other edgeR users dearly
+ − 1004 when their old scripts break. This tool currently now works with 2.4.6.
+ − 1005
+ − 1006 **Note on prior.N**
+ − 1007
+ − 1008 http://seqanswers.com/forums/showthread.php?t=5591 says:
+ − 1009
+ − 1010 *prior.n*
+ − 1011
+ − 1012 The value for prior.n determines the amount of smoothing of tagwise dispersions towards the common dispersion.
+ − 1013 You can think of it as like a "weight" for the common value. (It is actually the weight for the common likelihood
+ − 1014 in the weighted likelihood equation). The larger the value for prior.n, the more smoothing, i.e. the closer your
+ − 1015 tagwise dispersion estimates will be to the common dispersion. If you use a prior.n of 1, then that gives the
+ − 1016 common likelihood the weight of one observation.
+ − 1017
+ − 1018 In answer to your question, it is a good thing to squeeze the tagwise dispersions towards a common value,
+ − 1019 or else you will be using very unreliable estimates of the dispersion. I would not recommend using the value that
+ − 1020 you obtained from estimateSmoothing()---this is far too small and would result in virtually no moderation
+ − 1021 (squeezing) of the tagwise dispersions. How many samples do you have in your experiment?
+ − 1022 What is the experimental design? If you have few samples (less than 6) then I would suggest a prior.n of at least 10.
+ − 1023 If you have more samples, then the tagwise dispersion estimates will be more reliable,
+ − 1024 so you could consider using a smaller prior.n, although I would hesitate to use a prior.n less than 5.
+ − 1025
+ − 1026
+ − 1027 From Bioconductor Digest, Vol 118, Issue 5, Gordon writes:
+ − 1028
+ − 1029 Dear Dorota,
+ − 1030
+ − 1031 The important settings are prior.df and trend.
+ − 1032
+ − 1033 prior.n and prior.df are related through prior.df = prior.n * residual.df,
+ − 1034 and your experiment has residual.df = 36 - 12 = 24. So the old setting of
+ − 1035 prior.n=10 is equivalent for your data to prior.df = 240, a very large
+ − 1036 value. Going the other way, the new setting of prior.df=10 is equivalent
+ − 1037 to prior.n=10/24.
+ − 1038
+ − 1039 To recover old results with the current software you would use
+ − 1040
+ − 1041 estimateTagwiseDisp(object, prior.df=240, trend="none")
+ − 1042
+ − 1043 To get the new default from old software you would use
+ − 1044
+ − 1045 estimateTagwiseDisp(object, prior.n=10/24, trend=TRUE)
+ − 1046
+ − 1047 Actually the old trend method is equivalent to trend="loess" in the new
+ − 1048 software. You should use plotBCV(object) to see whether a trend is
+ − 1049 required.
+ − 1050
+ − 1051 Note you could also use
+ − 1052
+ − 1053 prior.n = getPriorN(object, prior.df=10)
+ − 1054
+ − 1055 to map between prior.df and prior.n.
+ − 1056
+ − 1057 ----
+ − 1058
+ − 1059 **Attributions**
+ − 1060
+ − 1061 edgeR - edgeR_
+ − 1062
+ − 1063 VOOM/limma - limma_VOOM_
+ − 1064
+ − 1065 DESeq2 - DESeq2_ for details
+ − 1066
+ − 1067 See above for Bioconductor package documentation for packages exposed in Galaxy by this tool and app store package.
+ − 1068
+ − 1069 Galaxy_ (that's what you are using right now!) for gluing everything together
+ − 1070
+ − 1071 Otherwise, all code and documentation comprising this tool was written by Ross Lazarus and is
+ − 1072 licensed to you under the LGPL_ like other rgenetics artefacts
+ − 1073
+ − 1074 .. _LGPL: http://www.gnu.org/copyleft/lesser.html
+ − 1075 .. _HTSeq: http://www-huber.embl.de/users/anders/HTSeq/doc/index.html
+ − 1076 .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
+ − 1077 .. _DESeq2: http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
+ − 1078 .. _limma_VOOM: http://www.bioconductor.org/packages/release/bioc/html/limma.html
+ − 1079 .. _Galaxy: http://getgalaxy.org
+ − 1080 </help>
+ − 1081
+ − 1082 </tool>
+ − 1083
+ − 1084