Mercurial > repos > ethevenot > univariate
diff univariate_script.R @ 0:ab2ee3414e4e draft
planemo upload for repository https://github.com/workflow4metabolomics/univariate.git commit 98e8f4464b2f7321acb010e26e2a1c82fe37096e
author | ethevenot |
---|---|
date | Tue, 24 Oct 2017 08:57:25 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/univariate_script.R Tue Oct 24 08:57:25 2017 -0400 @@ -0,0 +1,332 @@ +univariateF <- function(datMN, + samDF, + varDF, + facC, + tesC = c("ttest", "wilcoxon", "anova", "kruskal", "pearson", "spearman")[1], + adjC = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7], + thrN = 0.05, + pdfC) { + + + ## Option + + strAsFacL <- options()$stringsAsFactors + options(stingsAsFactors = FALSE) + options(warn = -1) + + ## Getting the response (either a factor or a numeric) + + if(mode(samDF[, facC]) == "character") { + facFcVn <- factor(samDF[, facC]) + facLevVc <- levels(facFcVn) + } else + facFcVn <- samDF[, facC] + + cat("\nPerforming '", tesC, "'\n", sep="") + + varPfxC <- paste0(make.names(facC), "_", tesC, "_") + + + if(tesC %in% c("ttest", "wilcoxon", "pearson", "spearman")) { + + + switch(tesC, + ttest = { + staF <- function(y) diff(tapply(y, facFcVn, function(x) mean(x, na.rm = TRUE))) + tesF <- function(y) t.test(y ~ facFcVn)[["p.value"]] + }, + wilcoxon = { + staF <- function(y) diff(tapply(y, facFcVn, function(x) median(x, na.rm = TRUE))) + tesF <- function(y) wilcox.test(y ~ facFcVn)[["p.value"]] + }, + pearson = { + staF <- function(y) cor(facFcVn, y, method = "pearson", use = "pairwise.complete.obs") + tesF <- function(y) cor.test(facFcVn, y, method = "pearson", use = "pairwise.complete.obs")[["p.value"]] + }, + spearman = { + staF <- function(y) cor(facFcVn, y, method = "spearman", use = "pairwise.complete.obs") + tesF <- function(y) cor.test(facFcVn, y, method = "spearman", use = "pairwise.complete.obs")[["p.value"]] + }) + + staVn <- apply(datMN, 2, staF) + + adjVn <- p.adjust(apply(datMN, + 2, + tesF), + method = adjC) + + sigVn <- as.numeric(adjVn < thrN) + + if(tesC %in% c("ttest", "wilcoxon")) + varPfxC <- paste0(varPfxC, paste(rev(facLevVc), collapse = "."), "_") + + varDF[, paste0(varPfxC, ifelse(tesC %in% c("ttest", "wilcoxon"), "dif", "cor"))] <- staVn + + varDF[, paste0(varPfxC, adjC)] <- adjVn + + varDF[, paste0(varPfxC, "sig")] <- sigVn + + ## graphic + + pdf(pdfC, onefile = TRUE) + + varVi <- which(sigVn > 0) + + if(tesC %in% c("ttest", "wilcoxon")) { + + facVc <- as.character(facFcVn) + names(facVc) <- rownames(samDF) + + for(varI in varVi) { + + varC <- rownames(varDF)[varI] + + boxF(facFcVn, + datMN[, varI], + paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")"), + facVc) + + } + + } else { ## pearson or spearman + + for(varI in varVi) { + + varC <- rownames(varDF)[varI] + + mod <- lm(datMN[, varI] ~ facFcVn) + + plot(facFcVn, datMN[, varI], + xlab = facC, + ylab = "", + pch = 18, + main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ", R2 = ", signif(summary(mod)$r.squared, 2), ")")) + + abline(mod, col = "red") + + } + + } + + dev.off() + + + } else if(tesC == "anova") { + + + ## getting the names of the pairwise comparisons 'class1Vclass2' + prwVc <- rownames(TukeyHSD(aov(datMN[, 1] ~ facFcVn))[["facFcVn"]]) + + prwVc <- gsub("-", ".", prwVc, fixed = TRUE) ## 2016-08-05: '-' character in dataframe column names seems not to be converted to "." by write.table on ubuntu R-3.3.1 + + ## omnibus and post-hoc tests + + aovMN <- t(apply(datMN, 2, function(varVn) { + + aovMod <- aov(varVn ~ facFcVn) + pvaN <- summary(aovMod)[[1]][1, "Pr(>F)"] + hsdMN <- TukeyHSD(aovMod)[["facFcVn"]] + c(pvaN, c(hsdMN[, c("diff", "p adj")])) + + })) + + difVi <- 1:length(prwVc) + 1 + + ## difference of the means for each pairwise comparison + + difMN <- aovMN[, difVi] + colnames(difMN) <- paste0(varPfxC, prwVc, "_dif") + + ## correction for multiple testing + + aovMN <- aovMN[, -difVi, drop = FALSE] + aovMN <- apply(aovMN, 2, function(pvaVn) p.adjust(pvaVn, method = adjC)) + + ## significance coding (0 = not significant, 1 = significant) + + adjVn <- aovMN[, 1] + sigVn <- as.numeric(adjVn < thrN) + + aovMN <- aovMN[, -1, drop = FALSE] + colnames(aovMN) <- paste0(varPfxC, prwVc, "_", adjC) + + aovSigMN <- aovMN < thrN + mode(aovSigMN) <- "numeric" + colnames(aovSigMN) <- paste0(varPfxC, prwVc, "_sig") + + ## final aggregated table + + resMN <- cbind(adjVn, sigVn, difMN, aovMN, aovSigMN) + colnames(resMN)[1:2] <- paste0(varPfxC, c(adjC, "sig")) + + varDF <- cbind.data.frame(varDF, as.data.frame(resMN)) + + ## graphic + + pdf(pdfC, onefile = TRUE) + + for(varI in 1:nrow(varDF)) { + + if(sum(aovSigMN[varI, ]) > 0) { + + varC <- rownames(varDF)[varI] + + boxplot(datMN[, varI] ~ facFcVn, + main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")")) + + for(prwI in 1:length(prwVc)) { + + if(aovSigMN[varI, paste0(varPfxC, prwVc[prwI], "_sig")] == 1) { + + claVc <- unlist(strsplit(prwVc[prwI], ".", fixed = TRUE)) + aovClaVl <- facFcVn %in% claVc + aovFc <- facFcVn[aovClaVl, drop = TRUE] + aovVc <- as.character(aovFc) + names(aovVc) <- rownames(samDF)[aovClaVl] + boxF(aovFc, + datMN[aovClaVl, varI], + paste0(varC, " (", adjC, " = ", signif(aovMN[varI, paste0(varPfxC, prwVc[prwI], "_", adjC)], 2), ")"), + aovVc) + + } + + } + + } + + } + + dev.off() + + + } else if(tesC == "kruskal") { + + + ## getting the names of the pairwise comparisons 'class1.class2' + + nemMN <- posthoc.kruskal.nemenyi.test(datMN[, 1], facFcVn, "Tukey")[["p.value"]] + nemVl <- c(lower.tri(nemMN, diag = TRUE)) + nemClaMC <- cbind(rownames(nemMN)[c(row(nemMN))][nemVl], + colnames(nemMN)[c(col(nemMN))][nemVl]) + nemNamVc <- paste0(nemClaMC[, 1], ".", nemClaMC[, 2]) + pfxNemVc <- paste0(varPfxC, nemNamVc) + + ## omnibus and post-hoc tests + + nemMN <- t(apply(datMN, 2, function(varVn) { + + pvaN <- kruskal.test(varVn ~ facFcVn)[["p.value"]] + varNemMN <- posthoc.kruskal.nemenyi.test(varVn, facFcVn, "Tukey")[["p.value"]] + c(pvaN, c(varNemMN)) + + })) + + ## correction for multiple testing + + nemMN <- apply(nemMN, 2, + function(pvaVn) p.adjust(pvaVn, method = adjC)) + adjVn <- nemMN[, 1] + sigVn <- as.numeric(adjVn < thrN) + nemMN <- nemMN[, c(FALSE, nemVl)] + colnames(nemMN) <- paste0(pfxNemVc, "_", adjC) + + ## significance coding (0 = not significant, 1 = significant) + + nemSigMN <- nemMN < thrN + mode(nemSigMN) <- "numeric" + colnames(nemSigMN) <- paste0(pfxNemVc, "_sig") + + ## difference of the medians for each pairwise comparison + + difMN <- sapply(1:nrow(nemClaMC), function(prwI) { + prwVc <- nemClaMC[prwI, ] + prwVi <- which(facFcVn %in% prwVc) + prwFacFc <- factor(as.character(facFcVn)[prwVi], levels = prwVc) + apply(datMN[prwVi, ], 2, function(varVn) -diff(as.numeric(tapply(varVn, prwFacFc, function(x) median(x, na.rm = TRUE))))) + }) + colnames(difMN) <- gsub("_sig", "_dif", colnames(nemSigMN)) + + ## final aggregated table + + resMN <- cbind(adjVn, sigVn, difMN, nemMN, nemSigMN) + colnames(resMN)[1:2] <- paste0(varPfxC, c(adjC, "sig")) + + varDF <- cbind.data.frame(varDF, as.data.frame(resMN)) + + ## graphic + + pdf(pdfC, onefile = TRUE) + + for(varI in 1:nrow(varDF)) { + + if(sum(nemSigMN[varI, ]) > 0) { + + varC <- rownames(varDF)[varI] + + boxplot(datMN[, varI] ~ facFcVn, + main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")")) + + for(nemI in 1:length(nemNamVc)) { + + if(nemSigMN[varI, paste0(varPfxC, nemNamVc[nemI], "_sig")] == 1) { + + nemClaVc <- nemClaMC[nemI, ] + nemClaVl <- facFcVn %in% nemClaVc + nemFc <- facFcVn[nemClaVl, drop = TRUE] + nemVc <- as.character(nemFc) + names(nemVc) <- rownames(samDF)[nemClaVl] + boxF(nemFc, + datMN[nemClaVl, varI], + paste0(varC, " (", adjC, " = ", signif(nemMN[varI, paste0(varPfxC, nemNamVc[nemI], "_", adjC)], 2), ")"), + nemVc) + + } + + } + + } + + } + + dev.off() + + } + + names(sigVn) <- rownames(varDF) + sigSumN <- sum(sigVn, na.rm = TRUE) + if(sigSumN) { + cat("\nThe following ", sigSumN, " variable", ifelse(sigSumN > 1, "s", ""), " (", round(sigSumN / length(sigVn) * 100), "%) ", ifelse(sigSumN > 1, "were", "was"), " found significant at the ", thrN, " level:\n", sep = "") + cat(paste(rownames(varDF)[sigVn > 0], collapse = "\n"), "\n", sep = "") + } else + cat("\nNo significant variable found at the selected ", thrN, " level\n", sep = "") + + options(stingsAsFactors = strAsFacL) + + return(varDF) + +} + + +boxF <- function(xFc, + yVn, + maiC, + xVc) { + + boxLs <- boxplot(yVn ~ xFc, + main = maiC) + + outVn <- boxLs[["out"]] + + if(length(outVn)) { + + for(outI in 1:length(outVn)) { + levI <- which(levels(xFc) == xVc[names(outVn)[outI]]) + text(levI, + outVn[outI], + labels = names(outVn)[outI], + pos = ifelse(levI == 2, 2, 4)) + } + + } + +}