comparison univariate_script.R @ 0:ab2ee3414e4e draft

planemo upload for repository https://github.com/workflow4metabolomics/univariate.git commit 98e8f4464b2f7321acb010e26e2a1c82fe37096e
author ethevenot
date Tue, 24 Oct 2017 08:57:25 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:ab2ee3414e4e
1 univariateF <- function(datMN,
2 samDF,
3 varDF,
4 facC,
5 tesC = c("ttest", "wilcoxon", "anova", "kruskal", "pearson", "spearman")[1],
6 adjC = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7],
7 thrN = 0.05,
8 pdfC) {
9
10
11 ## Option
12
13 strAsFacL <- options()$stringsAsFactors
14 options(stingsAsFactors = FALSE)
15 options(warn = -1)
16
17 ## Getting the response (either a factor or a numeric)
18
19 if(mode(samDF[, facC]) == "character") {
20 facFcVn <- factor(samDF[, facC])
21 facLevVc <- levels(facFcVn)
22 } else
23 facFcVn <- samDF[, facC]
24
25 cat("\nPerforming '", tesC, "'\n", sep="")
26
27 varPfxC <- paste0(make.names(facC), "_", tesC, "_")
28
29
30 if(tesC %in% c("ttest", "wilcoxon", "pearson", "spearman")) {
31
32
33 switch(tesC,
34 ttest = {
35 staF <- function(y) diff(tapply(y, facFcVn, function(x) mean(x, na.rm = TRUE)))
36 tesF <- function(y) t.test(y ~ facFcVn)[["p.value"]]
37 },
38 wilcoxon = {
39 staF <- function(y) diff(tapply(y, facFcVn, function(x) median(x, na.rm = TRUE)))
40 tesF <- function(y) wilcox.test(y ~ facFcVn)[["p.value"]]
41 },
42 pearson = {
43 staF <- function(y) cor(facFcVn, y, method = "pearson", use = "pairwise.complete.obs")
44 tesF <- function(y) cor.test(facFcVn, y, method = "pearson", use = "pairwise.complete.obs")[["p.value"]]
45 },
46 spearman = {
47 staF <- function(y) cor(facFcVn, y, method = "spearman", use = "pairwise.complete.obs")
48 tesF <- function(y) cor.test(facFcVn, y, method = "spearman", use = "pairwise.complete.obs")[["p.value"]]
49 })
50
51 staVn <- apply(datMN, 2, staF)
52
53 adjVn <- p.adjust(apply(datMN,
54 2,
55 tesF),
56 method = adjC)
57
58 sigVn <- as.numeric(adjVn < thrN)
59
60 if(tesC %in% c("ttest", "wilcoxon"))
61 varPfxC <- paste0(varPfxC, paste(rev(facLevVc), collapse = "."), "_")
62
63 varDF[, paste0(varPfxC, ifelse(tesC %in% c("ttest", "wilcoxon"), "dif", "cor"))] <- staVn
64
65 varDF[, paste0(varPfxC, adjC)] <- adjVn
66
67 varDF[, paste0(varPfxC, "sig")] <- sigVn
68
69 ## graphic
70
71 pdf(pdfC, onefile = TRUE)
72
73 varVi <- which(sigVn > 0)
74
75 if(tesC %in% c("ttest", "wilcoxon")) {
76
77 facVc <- as.character(facFcVn)
78 names(facVc) <- rownames(samDF)
79
80 for(varI in varVi) {
81
82 varC <- rownames(varDF)[varI]
83
84 boxF(facFcVn,
85 datMN[, varI],
86 paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")"),
87 facVc)
88
89 }
90
91 } else { ## pearson or spearman
92
93 for(varI in varVi) {
94
95 varC <- rownames(varDF)[varI]
96
97 mod <- lm(datMN[, varI] ~ facFcVn)
98
99 plot(facFcVn, datMN[, varI],
100 xlab = facC,
101 ylab = "",
102 pch = 18,
103 main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ", R2 = ", signif(summary(mod)$r.squared, 2), ")"))
104
105 abline(mod, col = "red")
106
107 }
108
109 }
110
111 dev.off()
112
113
114 } else if(tesC == "anova") {
115
116
117 ## getting the names of the pairwise comparisons 'class1Vclass2'
118 prwVc <- rownames(TukeyHSD(aov(datMN[, 1] ~ facFcVn))[["facFcVn"]])
119
120 prwVc <- gsub("-", ".", prwVc, fixed = TRUE) ## 2016-08-05: '-' character in dataframe column names seems not to be converted to "." by write.table on ubuntu R-3.3.1
121
122 ## omnibus and post-hoc tests
123
124 aovMN <- t(apply(datMN, 2, function(varVn) {
125
126 aovMod <- aov(varVn ~ facFcVn)
127 pvaN <- summary(aovMod)[[1]][1, "Pr(>F)"]
128 hsdMN <- TukeyHSD(aovMod)[["facFcVn"]]
129 c(pvaN, c(hsdMN[, c("diff", "p adj")]))
130
131 }))
132
133 difVi <- 1:length(prwVc) + 1
134
135 ## difference of the means for each pairwise comparison
136
137 difMN <- aovMN[, difVi]
138 colnames(difMN) <- paste0(varPfxC, prwVc, "_dif")
139
140 ## correction for multiple testing
141
142 aovMN <- aovMN[, -difVi, drop = FALSE]
143 aovMN <- apply(aovMN, 2, function(pvaVn) p.adjust(pvaVn, method = adjC))
144
145 ## significance coding (0 = not significant, 1 = significant)
146
147 adjVn <- aovMN[, 1]
148 sigVn <- as.numeric(adjVn < thrN)
149
150 aovMN <- aovMN[, -1, drop = FALSE]
151 colnames(aovMN) <- paste0(varPfxC, prwVc, "_", adjC)
152
153 aovSigMN <- aovMN < thrN
154 mode(aovSigMN) <- "numeric"
155 colnames(aovSigMN) <- paste0(varPfxC, prwVc, "_sig")
156
157 ## final aggregated table
158
159 resMN <- cbind(adjVn, sigVn, difMN, aovMN, aovSigMN)
160 colnames(resMN)[1:2] <- paste0(varPfxC, c(adjC, "sig"))
161
162 varDF <- cbind.data.frame(varDF, as.data.frame(resMN))
163
164 ## graphic
165
166 pdf(pdfC, onefile = TRUE)
167
168 for(varI in 1:nrow(varDF)) {
169
170 if(sum(aovSigMN[varI, ]) > 0) {
171
172 varC <- rownames(varDF)[varI]
173
174 boxplot(datMN[, varI] ~ facFcVn,
175 main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")"))
176
177 for(prwI in 1:length(prwVc)) {
178
179 if(aovSigMN[varI, paste0(varPfxC, prwVc[prwI], "_sig")] == 1) {
180
181 claVc <- unlist(strsplit(prwVc[prwI], ".", fixed = TRUE))
182 aovClaVl <- facFcVn %in% claVc
183 aovFc <- facFcVn[aovClaVl, drop = TRUE]
184 aovVc <- as.character(aovFc)
185 names(aovVc) <- rownames(samDF)[aovClaVl]
186 boxF(aovFc,
187 datMN[aovClaVl, varI],
188 paste0(varC, " (", adjC, " = ", signif(aovMN[varI, paste0(varPfxC, prwVc[prwI], "_", adjC)], 2), ")"),
189 aovVc)
190
191 }
192
193 }
194
195 }
196
197 }
198
199 dev.off()
200
201
202 } else if(tesC == "kruskal") {
203
204
205 ## getting the names of the pairwise comparisons 'class1.class2'
206
207 nemMN <- posthoc.kruskal.nemenyi.test(datMN[, 1], facFcVn, "Tukey")[["p.value"]]
208 nemVl <- c(lower.tri(nemMN, diag = TRUE))
209 nemClaMC <- cbind(rownames(nemMN)[c(row(nemMN))][nemVl],
210 colnames(nemMN)[c(col(nemMN))][nemVl])
211 nemNamVc <- paste0(nemClaMC[, 1], ".", nemClaMC[, 2])
212 pfxNemVc <- paste0(varPfxC, nemNamVc)
213
214 ## omnibus and post-hoc tests
215
216 nemMN <- t(apply(datMN, 2, function(varVn) {
217
218 pvaN <- kruskal.test(varVn ~ facFcVn)[["p.value"]]
219 varNemMN <- posthoc.kruskal.nemenyi.test(varVn, facFcVn, "Tukey")[["p.value"]]
220 c(pvaN, c(varNemMN))
221
222 }))
223
224 ## correction for multiple testing
225
226 nemMN <- apply(nemMN, 2,
227 function(pvaVn) p.adjust(pvaVn, method = adjC))
228 adjVn <- nemMN[, 1]
229 sigVn <- as.numeric(adjVn < thrN)
230 nemMN <- nemMN[, c(FALSE, nemVl)]
231 colnames(nemMN) <- paste0(pfxNemVc, "_", adjC)
232
233 ## significance coding (0 = not significant, 1 = significant)
234
235 nemSigMN <- nemMN < thrN
236 mode(nemSigMN) <- "numeric"
237 colnames(nemSigMN) <- paste0(pfxNemVc, "_sig")
238
239 ## difference of the medians for each pairwise comparison
240
241 difMN <- sapply(1:nrow(nemClaMC), function(prwI) {
242 prwVc <- nemClaMC[prwI, ]
243 prwVi <- which(facFcVn %in% prwVc)
244 prwFacFc <- factor(as.character(facFcVn)[prwVi], levels = prwVc)
245 apply(datMN[prwVi, ], 2, function(varVn) -diff(as.numeric(tapply(varVn, prwFacFc, function(x) median(x, na.rm = TRUE)))))
246 })
247 colnames(difMN) <- gsub("_sig", "_dif", colnames(nemSigMN))
248
249 ## final aggregated table
250
251 resMN <- cbind(adjVn, sigVn, difMN, nemMN, nemSigMN)
252 colnames(resMN)[1:2] <- paste0(varPfxC, c(adjC, "sig"))
253
254 varDF <- cbind.data.frame(varDF, as.data.frame(resMN))
255
256 ## graphic
257
258 pdf(pdfC, onefile = TRUE)
259
260 for(varI in 1:nrow(varDF)) {
261
262 if(sum(nemSigMN[varI, ]) > 0) {
263
264 varC <- rownames(varDF)[varI]
265
266 boxplot(datMN[, varI] ~ facFcVn,
267 main = paste0(varC, " (", adjC, " = ", signif(adjVn[varI], 2), ")"))
268
269 for(nemI in 1:length(nemNamVc)) {
270
271 if(nemSigMN[varI, paste0(varPfxC, nemNamVc[nemI], "_sig")] == 1) {
272
273 nemClaVc <- nemClaMC[nemI, ]
274 nemClaVl <- facFcVn %in% nemClaVc
275 nemFc <- facFcVn[nemClaVl, drop = TRUE]
276 nemVc <- as.character(nemFc)
277 names(nemVc) <- rownames(samDF)[nemClaVl]
278 boxF(nemFc,
279 datMN[nemClaVl, varI],
280 paste0(varC, " (", adjC, " = ", signif(nemMN[varI, paste0(varPfxC, nemNamVc[nemI], "_", adjC)], 2), ")"),
281 nemVc)
282
283 }
284
285 }
286
287 }
288
289 }
290
291 dev.off()
292
293 }
294
295 names(sigVn) <- rownames(varDF)
296 sigSumN <- sum(sigVn, na.rm = TRUE)
297 if(sigSumN) {
298 cat("\nThe following ", sigSumN, " variable", ifelse(sigSumN > 1, "s", ""), " (", round(sigSumN / length(sigVn) * 100), "%) ", ifelse(sigSumN > 1, "were", "was"), " found significant at the ", thrN, " level:\n", sep = "")
299 cat(paste(rownames(varDF)[sigVn > 0], collapse = "\n"), "\n", sep = "")
300 } else
301 cat("\nNo significant variable found at the selected ", thrN, " level\n", sep = "")
302
303 options(stingsAsFactors = strAsFacL)
304
305 return(varDF)
306
307 }
308
309
310 boxF <- function(xFc,
311 yVn,
312 maiC,
313 xVc) {
314
315 boxLs <- boxplot(yVn ~ xFc,
316 main = maiC)
317
318 outVn <- boxLs[["out"]]
319
320 if(length(outVn)) {
321
322 for(outI in 1:length(outVn)) {
323 levI <- which(levels(xFc) == xVc[names(outVn)[outI]])
324 text(levI,
325 outVn[outI],
326 labels = names(outVn)[outI],
327 pos = ifelse(levI == 2, 2, 4))
328 }
329
330 }
331
332 }