Mercurial > repos > devteam > short_reads_trim_seq
diff short_reads_trim_seq.py @ 0:8c0b907e6e5b draft
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 10:59:57 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/short_reads_trim_seq.py Mon May 19 10:59:57 2014 -0400 @@ -0,0 +1,234 @@ +#!/usr/bin/env python +""" +trim reads based on the quality scores +input: read file and quality score file +output: trimmed read file +""" + +import os, sys, math, tempfile, re + +assert sys.version_info[:2] >= ( 2, 4 ) + +def stop_err( msg ): + sys.stderr.write( "%s\n" % msg ) + sys.exit() + +def append_to_outfile( outfile_name, seq_title, segments ): + segments = segments.split( ',' ) + if len( segments ) > 1: + outfile = open( outfile_name, 'a' ) + for i in range( len( segments ) ): + outfile.write( "%s_%d\n%s\n" % ( seq_title, i, segments[i] ) ) + outfile.close() + elif segments[0]: + outfile = open( outfile_name, 'a' ) + outfile.write( "%s\n%s\n" % ( seq_title, segments[0] ) ) + outfile.close() + +def trim_seq( seq, score, arg, trim_score, threshold ): + seq_method = '454' + trim_pos = 0 + # trim after a certain position + if arg.isdigit(): + keep_homopolymers = False + trim_pos = int( arg ) + if trim_pos > 0 and trim_pos < len( seq ): + seq = seq[0:trim_pos] + else: + keep_homopolymers = arg=='yes' + + new_trim_seq = '' + max_segment = 0 + + for i in range( len( seq ) ): + if i >= len( score ): + score.append(-1) + if int( score[i] ) >= trim_score: + pass_nuc = seq[ i:( i + 1 ) ] + else: + if keep_homopolymers and ( (i == 0 ) or ( seq[ i:( i + 1 ) ].lower() == seq[ ( i - 1 ):i ].lower() ) ): + pass_nuc = seq[ i:( i + 1 ) ] + else: + pass_nuc = ' ' + new_trim_seq = '%s%s' % ( new_trim_seq, pass_nuc ) + # find the max substrings + segments = new_trim_seq.split() + max_segment = '' + len_max_segment = 0 + if threshold == 0: + for seg in segments: + if len_max_segment < len( seg ): + max_segment = '%s,' % seg + len_max_segment = len( seg ) + elif len_max_segment == len( seg ): + max_segment = '%s%s,' % ( max_segment, seg ) + else: + for seg in segments: + if len( seg ) >= threshold: + max_segment = '%s%s,' % ( max_segment, seg ) + return max_segment[ 0:-1 ] + +def __main__(): + + try: + threshold_trim = int( sys.argv[1].strip() ) + except: + stop_err( "Minimal quality score must be numeric." ) + try: + threshold_report = int( sys.argv[2].strip() ) + except: + stop_err( "Minimal length of trimmed reads must be numeric." ) + outfile_seq_name = sys.argv[3].strip() + infile_seq_name = sys.argv[4].strip() + infile_score_name = sys.argv[5].strip() + arg = sys.argv[6].strip() + + seq_infile_name = infile_seq_name + score_infile_name = infile_score_name + + + # Determine quailty score format: tabular or fasta format within the first 100 lines + seq_method = None + data_type = None + for i, line in enumerate( file( score_infile_name ) ): + line = line.rstrip( '\r\n' ) + if not line or line.startswith( '#' ): + continue + if data_type == None: + if line.startswith( '>' ): + data_type = 'fasta' + continue + elif len( line.split( '\t' ) ) > 0: + fields = line.split() + for score in fields: + try: + int( score ) + data_type = 'tabular' + seq_method = 'solexa' + break + except: + break + elif data_type == 'fasta': + fields = line.split() + for score in fields: + try: + int( score ) + seq_method = '454' + break + except: + break + if i == 100: + break + + if data_type is None: + stop_err( 'This tool can only use fasta data or tabular data.' ) + if seq_method is None: + stop_err( 'Invalid data for fasta format.') + + if os.path.exists( seq_infile_name ) and os.path.exists( score_infile_name ): + seq = None + score = None + score_found = False + + score_file = open( score_infile_name, 'r' ) + + for i, line in enumerate( open( seq_infile_name ) ): + line = line.rstrip( '\r\n' ) + if not line or line.startswith( '#' ): + continue + if line.startswith( '>' ): + if seq: + scores = [] + if data_type == 'fasta': + score = None + score_found = False + score_line = 'start' + while not score_found and score_line: + score_line = score_file.readline().rstrip( '\r\n' ) + if not score_line or score_line.startswith( '#' ): + continue + if score_line.startswith( '>' ): + if score: + scores = score.split() + score_found = True + score = None + else: + for val in score_line.split(): + try: + int( val ) + except: + score_file.close() + stop_err( "Non-numerical value '%s' in score file." % val ) + if not score: + score = score_line + else: + score = '%s %s' % ( score, score_line ) + elif data_type == 'tabular': + score = score_file.readline().rstrip('\r\n') + loc = score.split( '\t' ) + for base in loc: + nuc_error = base.split() + try: + nuc_error[0] = int( nuc_error[0] ) + nuc_error[1] = int( nuc_error[1] ) + nuc_error[2] = int( nuc_error[2] ) + nuc_error[3] = int( nuc_error[3] ) + big = max( nuc_error ) + except: + score_file.close() + stop_err( "Invalid characters in line %d: '%s'" % ( i, line ) ) + scores.append( big ) + if scores: + new_trim_seq_segments = trim_seq( seq, scores, arg, threshold_trim, threshold_report ) + append_to_outfile( outfile_seq_name, seq_title, new_trim_seq_segments ) + + seq_title = line + seq = None + else: + if not seq: + seq = line + else: + seq = "%s%s" % ( seq, line ) + if seq: + scores = [] + if data_type == 'fasta': + score = None + while score_line: + score_line = score_file.readline().rstrip( '\r\n' ) + if not score_line or score_line.startswith( '#' ) or score_line.startswith( '>' ): + continue + for val in score_line.split(): + try: + int( val ) + except: + score_file.close() + stop_err( "Non-numerical value '%s' in score file." % val ) + if not score: + score = score_line + else: + score = "%s %s" % ( score, score_line ) + if score: + scores = score.split() + elif data_type == 'tabular': + score = score_file.readline().rstrip('\r\n') + loc = score.split( '\t' ) + for base in loc: + nuc_error = base.split() + try: + nuc_error[0] = int( nuc_error[0] ) + nuc_error[1] = int( nuc_error[1] ) + nuc_error[2] = int( nuc_error[2] ) + nuc_error[3] = int( nuc_error[3] ) + big = max( nuc_error ) + except: + score_file.close() + stop_err( "Invalid characters in line %d: '%s'" % ( i, line ) ) + scores.append( big ) + if scores: + new_trim_seq_segments = trim_seq( seq, scores, arg, threshold_trim, threshold_report ) + append_to_outfile( outfile_seq_name, seq_title, new_trim_seq_segments ) + score_file.close() + else: + stop_err( "Cannot locate sequence file '%s'or score file '%s'." % ( seq_infile_name, score_infile_name ) ) + +if __name__ == "__main__": __main__()