comparison short_reads_trim_seq.py @ 0:8c0b907e6e5b draft

Imported from capsule None
author devteam
date Mon, 19 May 2014 10:59:57 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:8c0b907e6e5b
1 #!/usr/bin/env python
2 """
3 trim reads based on the quality scores
4 input: read file and quality score file
5 output: trimmed read file
6 """
7
8 import os, sys, math, tempfile, re
9
10 assert sys.version_info[:2] >= ( 2, 4 )
11
12 def stop_err( msg ):
13 sys.stderr.write( "%s\n" % msg )
14 sys.exit()
15
16 def append_to_outfile( outfile_name, seq_title, segments ):
17 segments = segments.split( ',' )
18 if len( segments ) > 1:
19 outfile = open( outfile_name, 'a' )
20 for i in range( len( segments ) ):
21 outfile.write( "%s_%d\n%s\n" % ( seq_title, i, segments[i] ) )
22 outfile.close()
23 elif segments[0]:
24 outfile = open( outfile_name, 'a' )
25 outfile.write( "%s\n%s\n" % ( seq_title, segments[0] ) )
26 outfile.close()
27
28 def trim_seq( seq, score, arg, trim_score, threshold ):
29 seq_method = '454'
30 trim_pos = 0
31 # trim after a certain position
32 if arg.isdigit():
33 keep_homopolymers = False
34 trim_pos = int( arg )
35 if trim_pos > 0 and trim_pos < len( seq ):
36 seq = seq[0:trim_pos]
37 else:
38 keep_homopolymers = arg=='yes'
39
40 new_trim_seq = ''
41 max_segment = 0
42
43 for i in range( len( seq ) ):
44 if i >= len( score ):
45 score.append(-1)
46 if int( score[i] ) >= trim_score:
47 pass_nuc = seq[ i:( i + 1 ) ]
48 else:
49 if keep_homopolymers and ( (i == 0 ) or ( seq[ i:( i + 1 ) ].lower() == seq[ ( i - 1 ):i ].lower() ) ):
50 pass_nuc = seq[ i:( i + 1 ) ]
51 else:
52 pass_nuc = ' '
53 new_trim_seq = '%s%s' % ( new_trim_seq, pass_nuc )
54 # find the max substrings
55 segments = new_trim_seq.split()
56 max_segment = ''
57 len_max_segment = 0
58 if threshold == 0:
59 for seg in segments:
60 if len_max_segment < len( seg ):
61 max_segment = '%s,' % seg
62 len_max_segment = len( seg )
63 elif len_max_segment == len( seg ):
64 max_segment = '%s%s,' % ( max_segment, seg )
65 else:
66 for seg in segments:
67 if len( seg ) >= threshold:
68 max_segment = '%s%s,' % ( max_segment, seg )
69 return max_segment[ 0:-1 ]
70
71 def __main__():
72
73 try:
74 threshold_trim = int( sys.argv[1].strip() )
75 except:
76 stop_err( "Minimal quality score must be numeric." )
77 try:
78 threshold_report = int( sys.argv[2].strip() )
79 except:
80 stop_err( "Minimal length of trimmed reads must be numeric." )
81 outfile_seq_name = sys.argv[3].strip()
82 infile_seq_name = sys.argv[4].strip()
83 infile_score_name = sys.argv[5].strip()
84 arg = sys.argv[6].strip()
85
86 seq_infile_name = infile_seq_name
87 score_infile_name = infile_score_name
88
89
90 # Determine quailty score format: tabular or fasta format within the first 100 lines
91 seq_method = None
92 data_type = None
93 for i, line in enumerate( file( score_infile_name ) ):
94 line = line.rstrip( '\r\n' )
95 if not line or line.startswith( '#' ):
96 continue
97 if data_type == None:
98 if line.startswith( '>' ):
99 data_type = 'fasta'
100 continue
101 elif len( line.split( '\t' ) ) > 0:
102 fields = line.split()
103 for score in fields:
104 try:
105 int( score )
106 data_type = 'tabular'
107 seq_method = 'solexa'
108 break
109 except:
110 break
111 elif data_type == 'fasta':
112 fields = line.split()
113 for score in fields:
114 try:
115 int( score )
116 seq_method = '454'
117 break
118 except:
119 break
120 if i == 100:
121 break
122
123 if data_type is None:
124 stop_err( 'This tool can only use fasta data or tabular data.' )
125 if seq_method is None:
126 stop_err( 'Invalid data for fasta format.')
127
128 if os.path.exists( seq_infile_name ) and os.path.exists( score_infile_name ):
129 seq = None
130 score = None
131 score_found = False
132
133 score_file = open( score_infile_name, 'r' )
134
135 for i, line in enumerate( open( seq_infile_name ) ):
136 line = line.rstrip( '\r\n' )
137 if not line or line.startswith( '#' ):
138 continue
139 if line.startswith( '>' ):
140 if seq:
141 scores = []
142 if data_type == 'fasta':
143 score = None
144 score_found = False
145 score_line = 'start'
146 while not score_found and score_line:
147 score_line = score_file.readline().rstrip( '\r\n' )
148 if not score_line or score_line.startswith( '#' ):
149 continue
150 if score_line.startswith( '>' ):
151 if score:
152 scores = score.split()
153 score_found = True
154 score = None
155 else:
156 for val in score_line.split():
157 try:
158 int( val )
159 except:
160 score_file.close()
161 stop_err( "Non-numerical value '%s' in score file." % val )
162 if not score:
163 score = score_line
164 else:
165 score = '%s %s' % ( score, score_line )
166 elif data_type == 'tabular':
167 score = score_file.readline().rstrip('\r\n')
168 loc = score.split( '\t' )
169 for base in loc:
170 nuc_error = base.split()
171 try:
172 nuc_error[0] = int( nuc_error[0] )
173 nuc_error[1] = int( nuc_error[1] )
174 nuc_error[2] = int( nuc_error[2] )
175 nuc_error[3] = int( nuc_error[3] )
176 big = max( nuc_error )
177 except:
178 score_file.close()
179 stop_err( "Invalid characters in line %d: '%s'" % ( i, line ) )
180 scores.append( big )
181 if scores:
182 new_trim_seq_segments = trim_seq( seq, scores, arg, threshold_trim, threshold_report )
183 append_to_outfile( outfile_seq_name, seq_title, new_trim_seq_segments )
184
185 seq_title = line
186 seq = None
187 else:
188 if not seq:
189 seq = line
190 else:
191 seq = "%s%s" % ( seq, line )
192 if seq:
193 scores = []
194 if data_type == 'fasta':
195 score = None
196 while score_line:
197 score_line = score_file.readline().rstrip( '\r\n' )
198 if not score_line or score_line.startswith( '#' ) or score_line.startswith( '>' ):
199 continue
200 for val in score_line.split():
201 try:
202 int( val )
203 except:
204 score_file.close()
205 stop_err( "Non-numerical value '%s' in score file." % val )
206 if not score:
207 score = score_line
208 else:
209 score = "%s %s" % ( score, score_line )
210 if score:
211 scores = score.split()
212 elif data_type == 'tabular':
213 score = score_file.readline().rstrip('\r\n')
214 loc = score.split( '\t' )
215 for base in loc:
216 nuc_error = base.split()
217 try:
218 nuc_error[0] = int( nuc_error[0] )
219 nuc_error[1] = int( nuc_error[1] )
220 nuc_error[2] = int( nuc_error[2] )
221 nuc_error[3] = int( nuc_error[3] )
222 big = max( nuc_error )
223 except:
224 score_file.close()
225 stop_err( "Invalid characters in line %d: '%s'" % ( i, line ) )
226 scores.append( big )
227 if scores:
228 new_trim_seq_segments = trim_seq( seq, scores, arg, threshold_trim, threshold_report )
229 append_to_outfile( outfile_seq_name, seq_title, new_trim_seq_segments )
230 score_file.close()
231 else:
232 stop_err( "Cannot locate sequence file '%s'or score file '%s'." % ( seq_infile_name, score_infile_name ) )
233
234 if __name__ == "__main__": __main__()