Mercurial > repos > devteam > kernel_principal_component_analysis
view kpca.py @ 0:5642f7ee948b draft
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 11:00:04 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python """ Run kernel PCA using kpca() from R 'kernlab' package usage: %prog [options] -i, --input=i: Input file -o, --output1=o: Summary output -p, --output2=p: Figures output -c, --var_cols=c: Variable columns -k, --kernel=k: Kernel function -f, --features=f: Number of principal components to return -s, --sigma=s: sigma -d, --degree=d: degree -l, --scale=l: scale -t, --offset=t: offset -r, --order=r: order usage: %prog input output1 output2 var_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) """ import sys, string from rpy import * import numpy from bx.cookbook import doc_optparse def stop_err(msg): sys.stderr.write(msg) sys.exit() #Parse Command Line options, args = doc_optparse.parse( __doc__ ) #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} infile = options.input x_cols = options.var_cols.split(',') kernel = options.kernel outfile = options.output1 outfile2 = options.output2 ncomps = int(options.features) fout = open(outfile,'w') elems = [] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) x_vals = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) NA = 'NA' skipped = 0 for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.strip().split("\t") for k,col in enumerate(x_cols): try: xval = float(fields[col]) except: #xval = r('NA') xval = NaN# x_vals[k].append(xval) except: skipped += 1 x_vals1 = numpy.asarray(x_vals).transpose() dat= r.list(array(x_vals1)) print r('library("kernlab")') try: r.suppressWarnings(r.library('kernlab')) except: stop_err('Missing R library kernlab') set_default_mode(NO_CONVERSION) if kernel=="rbfdot" or kernel=="anovadot": pars = r.list(sigma=float(options.sigma)) elif kernel=="polydot": pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) elif kernel=="tanhdot": pars = r.list(scale=float(options.scale),offset=float(options.offset)) elif kernel=="besseldot": pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) elif kernel=="anovadot": pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) else: pars = r.list() try: kpc = r.kpca(x=r.na_exclude(dat), kernel=kernel, kpar=pars, features=ncomps) except RException, rex: stop_err("Encountered error while performing kPCA on the input data: %s" %(rex)) set_default_mode(BASIC_CONVERSION) eig = r.eig(kpc) pcv = r.pcv(kpc) rotated = r.rotated(kpc) comps = eig.keys() eigv = eig.values() for i in range(ncomps): eigv[comps.index('Comp.%s' %(i+1))] = eig.values()[i] print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) print >>fout, "#Eigenvalue\t%s" %("\t".join(["%.4g" % el for el in eig.values()])) print >>fout, "#Principal component vectors\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for obs,val in enumerate(pcv): print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) print >>fout, "#Rotated values\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for obs,val in enumerate(rotated): print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) r.pdf( outfile2, 8, 8 ) if ncomps != 1: r.pairs(rotated,labels=r.list(range(1,ncomps+1)),main="Scatterplot of rotated values") else: r.plot(rotated, ylab='Comp.1', main="Scatterplot of rotated values") r.dev_off()