Mercurial > repos > devteam > kernel_principal_component_analysis
diff kpca.py @ 0:5642f7ee948b draft
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 11:00:04 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/kpca.py Mon May 19 11:00:04 2014 -0400 @@ -0,0 +1,134 @@ +#!/usr/bin/env python + +""" +Run kernel PCA using kpca() from R 'kernlab' package + +usage: %prog [options] + -i, --input=i: Input file + -o, --output1=o: Summary output + -p, --output2=p: Figures output + -c, --var_cols=c: Variable columns + -k, --kernel=k: Kernel function + -f, --features=f: Number of principal components to return + -s, --sigma=s: sigma + -d, --degree=d: degree + -l, --scale=l: scale + -t, --offset=t: offset + -r, --order=r: order + +usage: %prog input output1 output2 var_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) +""" + +import sys, string +from rpy import * +import numpy +from bx.cookbook import doc_optparse + + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + +#Parse Command Line +options, args = doc_optparse.parse( __doc__ ) +#{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} + +infile = options.input +x_cols = options.var_cols.split(',') +kernel = options.kernel +outfile = options.output1 +outfile2 = options.output2 +ncomps = int(options.features) +fout = open(outfile,'w') + +elems = [] +for i, line in enumerate( file ( infile )): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +x_vals = [] + +for k,col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + +NA = 'NA' +skipped = 0 +for ind,line in enumerate( file( infile )): + if line and not line.startswith( '#' ): + try: + fields = line.strip().split("\t") + for k,col in enumerate(x_cols): + try: + xval = float(fields[col]) + except: + #xval = r('NA') + xval = NaN# + x_vals[k].append(xval) + except: + skipped += 1 + +x_vals1 = numpy.asarray(x_vals).transpose() +dat= r.list(array(x_vals1)) + +print r('library("kernlab")') + +try: + r.suppressWarnings(r.library('kernlab')) +except: + stop_err('Missing R library kernlab') + +set_default_mode(NO_CONVERSION) +if kernel=="rbfdot" or kernel=="anovadot": + pars = r.list(sigma=float(options.sigma)) +elif kernel=="polydot": + pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) +elif kernel=="tanhdot": + pars = r.list(scale=float(options.scale),offset=float(options.offset)) +elif kernel=="besseldot": + pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) +elif kernel=="anovadot": + pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) +else: + pars = r.list() + +try: + kpc = r.kpca(x=r.na_exclude(dat), kernel=kernel, kpar=pars, features=ncomps) +except RException, rex: + stop_err("Encountered error while performing kPCA on the input data: %s" %(rex)) +set_default_mode(BASIC_CONVERSION) + +eig = r.eig(kpc) +pcv = r.pcv(kpc) +rotated = r.rotated(kpc) + +comps = eig.keys() +eigv = eig.values() +for i in range(ncomps): + eigv[comps.index('Comp.%s' %(i+1))] = eig.values()[i] + +print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) + +print >>fout, "#Eigenvalue\t%s" %("\t".join(["%.4g" % el for el in eig.values()])) + +print >>fout, "#Principal component vectors\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) +for obs,val in enumerate(pcv): + print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) + +print >>fout, "#Rotated values\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) +for obs,val in enumerate(rotated): + print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) + +r.pdf( outfile2, 8, 8 ) +if ncomps != 1: + r.pairs(rotated,labels=r.list(range(1,ncomps+1)),main="Scatterplot of rotated values") +else: + r.plot(rotated, ylab='Comp.1', main="Scatterplot of rotated values") +r.dev_off() \ No newline at end of file