Mercurial > repos > devteam > kernel_principal_component_analysis
comparison kpca.py @ 0:5642f7ee948b draft
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 11:00:04 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5642f7ee948b |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 """ | |
4 Run kernel PCA using kpca() from R 'kernlab' package | |
5 | |
6 usage: %prog [options] | |
7 -i, --input=i: Input file | |
8 -o, --output1=o: Summary output | |
9 -p, --output2=p: Figures output | |
10 -c, --var_cols=c: Variable columns | |
11 -k, --kernel=k: Kernel function | |
12 -f, --features=f: Number of principal components to return | |
13 -s, --sigma=s: sigma | |
14 -d, --degree=d: degree | |
15 -l, --scale=l: scale | |
16 -t, --offset=t: offset | |
17 -r, --order=r: order | |
18 | |
19 usage: %prog input output1 output2 var_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) | |
20 """ | |
21 | |
22 import sys, string | |
23 from rpy import * | |
24 import numpy | |
25 from bx.cookbook import doc_optparse | |
26 | |
27 | |
28 def stop_err(msg): | |
29 sys.stderr.write(msg) | |
30 sys.exit() | |
31 | |
32 #Parse Command Line | |
33 options, args = doc_optparse.parse( __doc__ ) | |
34 #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} | |
35 | |
36 infile = options.input | |
37 x_cols = options.var_cols.split(',') | |
38 kernel = options.kernel | |
39 outfile = options.output1 | |
40 outfile2 = options.output2 | |
41 ncomps = int(options.features) | |
42 fout = open(outfile,'w') | |
43 | |
44 elems = [] | |
45 for i, line in enumerate( file ( infile )): | |
46 line = line.rstrip('\r\n') | |
47 if len( line )>0 and not line.startswith( '#' ): | |
48 elems = line.split( '\t' ) | |
49 break | |
50 if i == 30: | |
51 break # Hopefully we'll never get here... | |
52 | |
53 if len( elems )<1: | |
54 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
55 | |
56 x_vals = [] | |
57 | |
58 for k,col in enumerate(x_cols): | |
59 x_cols[k] = int(col)-1 | |
60 x_vals.append([]) | |
61 | |
62 NA = 'NA' | |
63 skipped = 0 | |
64 for ind,line in enumerate( file( infile )): | |
65 if line and not line.startswith( '#' ): | |
66 try: | |
67 fields = line.strip().split("\t") | |
68 for k,col in enumerate(x_cols): | |
69 try: | |
70 xval = float(fields[col]) | |
71 except: | |
72 #xval = r('NA') | |
73 xval = NaN# | |
74 x_vals[k].append(xval) | |
75 except: | |
76 skipped += 1 | |
77 | |
78 x_vals1 = numpy.asarray(x_vals).transpose() | |
79 dat= r.list(array(x_vals1)) | |
80 | |
81 print r('library("kernlab")') | |
82 | |
83 try: | |
84 r.suppressWarnings(r.library('kernlab')) | |
85 except: | |
86 stop_err('Missing R library kernlab') | |
87 | |
88 set_default_mode(NO_CONVERSION) | |
89 if kernel=="rbfdot" or kernel=="anovadot": | |
90 pars = r.list(sigma=float(options.sigma)) | |
91 elif kernel=="polydot": | |
92 pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) | |
93 elif kernel=="tanhdot": | |
94 pars = r.list(scale=float(options.scale),offset=float(options.offset)) | |
95 elif kernel=="besseldot": | |
96 pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) | |
97 elif kernel=="anovadot": | |
98 pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) | |
99 else: | |
100 pars = r.list() | |
101 | |
102 try: | |
103 kpc = r.kpca(x=r.na_exclude(dat), kernel=kernel, kpar=pars, features=ncomps) | |
104 except RException, rex: | |
105 stop_err("Encountered error while performing kPCA on the input data: %s" %(rex)) | |
106 set_default_mode(BASIC_CONVERSION) | |
107 | |
108 eig = r.eig(kpc) | |
109 pcv = r.pcv(kpc) | |
110 rotated = r.rotated(kpc) | |
111 | |
112 comps = eig.keys() | |
113 eigv = eig.values() | |
114 for i in range(ncomps): | |
115 eigv[comps.index('Comp.%s' %(i+1))] = eig.values()[i] | |
116 | |
117 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
118 | |
119 print >>fout, "#Eigenvalue\t%s" %("\t".join(["%.4g" % el for el in eig.values()])) | |
120 | |
121 print >>fout, "#Principal component vectors\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
122 for obs,val in enumerate(pcv): | |
123 print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
124 | |
125 print >>fout, "#Rotated values\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
126 for obs,val in enumerate(rotated): | |
127 print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
128 | |
129 r.pdf( outfile2, 8, 8 ) | |
130 if ncomps != 1: | |
131 r.pairs(rotated,labels=r.list(range(1,ncomps+1)),main="Scatterplot of rotated values") | |
132 else: | |
133 r.plot(rotated, ylab='Comp.1', main="Scatterplot of rotated values") | |
134 r.dev_off() |