Mercurial > repos > devteam > dwt_ivc_all
diff execute_dwt_IvC_all.R @ 1:509993d9fdca draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/dwt_ivc_all commit f929353ffb0623f2218d7dec459c7da62f3b0d24"
author | devteam |
---|---|
date | Mon, 06 Jul 2020 18:12:29 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/execute_dwt_IvC_all.R Mon Jul 06 18:12:29 2020 +0000 @@ -0,0 +1,163 @@ +########################################################################################### +## code to do wavelet Indel vs. Control +## signal is the difference I-C; function is second moment i.e. variance from zero not mean +## to perform wavelet transf. of signal, scale-by-scale analysis of the function +## create null bands by permuting the original data series +## generate plots and table matrix of correlation coefficients including p-values +############################################################################################ +library("wavethresh"); +library("waveslim"); + +options(echo = FALSE) + +## normalize data +norm <- function(data) { + v <- (data - mean(data)) / sd(data); + if (sum(is.na(v)) >= 1) { + v <- data; + } + return(v); +} + +dwt_cor <- function(data_short, names_short, data_long, names_long, test, pdf, table, filter = 4, bc = "symmetric", wf = "haar", boundary = "reflection") { + print(test); + print(pdf); + print(table); + + pdf(file = pdf); + final_pvalue <- NULL; + title <- NULL; + + short_levels <- wavethresh::wd(data_short[, 1], filter.number = filter, bc = bc)$nlevels; + title <- c("motif"); + for (i in 1:short_levels) { + title <- c(title, paste(i, "moment2", sep = "_"), paste(i, "pval", sep = "_"), paste(i, "test", sep = "_")); + } + print(title); + + ## loop to compare a vs a + for (i in seq_len(length(names_short))) { + wave1_dwt <- NULL; + m2_dwt <- NULL; + diff <- NULL; + var_dwt <- NULL; + out <- NULL; + out <- vector(length = length(title)); + + print(names_short[i]); + print(names_long[i]); + + ## need exit if not comparing motif(a) vs motif(a) + if (names_short[i] != names_long[i]) { + stop(paste("motif", names_short[i], "is not the same as", names_long[i], sep = " ")); + } + else { + ## signal is the difference I-C data sets + diff <- data_short[, i] - data_long[, i]; + + ## normalize the signal + diff <- norm(diff); + + ## function is 2nd moment + ## 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 + wave1_dwt <- waveslim::dwt(diff, wf = wf, short_levels, boundary = boundary); + var_dwt <- waveslim::wave.variance(wave1_dwt); + m2_dwt <- vector(length = short_levels) + for (level in 1:short_levels) { + m2_dwt[level] <- var_dwt[level, 1] + (mean(diff)^2); + } + + ## CI bands by permutation of time series + feature1 <- NULL; + feature2 <- NULL; + feature1 <- data_short[, i]; + feature2 <- data_long[, i]; + null <- NULL; + results <- NULL; + med <- NULL; + m2_25 <- NULL; + m2_975 <- NULL; + + for (k in 1:1000) { + nk_1 <- NULL; + nk_2 <- NULL; + m2_null <- NULL; + var_null <- NULL; + null_levels <- NULL; + null_wave1 <- NULL; + null_diff <- NULL; + nk_1 <- sample(feature1, length(feature1), replace = FALSE); + nk_2 <- sample(feature2, length(feature2), replace = FALSE); + null_levels <- wavethresh::wd(nk_1, filter.number = filter, bc = bc)$nlevels; + null_diff <- nk_1 - nk_2; + null_diff <- norm(null_diff); + null_wave1 <- waveslim::dwt(null_diff, wf = wf, short_levels, boundary = boundary); + var_null <- waveslim::wave.variance(null_wave1); + m2_null <- vector(length = null_levels); + for (level in 1:null_levels) { + m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2); + } + null <- rbind(null, m2_null); + } + + null <- apply(null, 2, sort, na.last = TRUE); + m2_25 <- null[25, ]; + m2_975 <- null[975, ]; + med <- apply(null, 2, median, na.rm = TRUE); + + ## plot + results <- cbind(m2_dwt, m2_25, m2_975); + matplot(results, type = "b", pch = "*", lty = 1, col = c(1, 2, 2), xlab = "Wavelet Scale", ylab = c("Wavelet 2nd Moment", test), main = (names_short[i]), cex.main = 0.75); + abline(h = 1); + + ## get pvalues by comparison to null distribution + out <- c(names_short[i]); + for (m in seq_len(length(m2_dwt))) { + print(paste("scale", m, sep = " ")); + print(paste("m2", m2_dwt[m], sep = " ")); + print(paste("median", med[m], sep = " ")); + out <- c(out, format(m2_dwt[m], digits = 4)); + pv <- NULL; + if (is.na(m2_dwt[m])) { + pv <- "NA"; + } + else { + if (m2_dwt[m] >= med[m]) { + ## R tail test + tail <- "R"; + pv <- (length(which(null[, m] >= m2_dwt[m]))) / (length(na.exclude(null[, m]))); + } + else{ + if (m2_dwt[m] < med[m]) { + ## L tail test + tail <- "L"; + pv <- (length(which(null[, m] <= m2_dwt[m]))) / (length(na.exclude(null[, m]))); + } + } + } + out <- c(out, pv); + print(pv); + out <- c(out, tail); + } + final_pvalue <- rbind(final_pvalue, out); + print(out); + } + } + + colnames(final_pvalue) <- title; + write.table(final_pvalue, file = table, sep = "\t", quote = FALSE, row.names = FALSE); + dev.off(); +} +## execute +## read in data +args <- commandArgs(trailingOnly = TRUE) + +input_data <- read.delim(args[1]); +input_data_names <- colnames(input_data); + +control_data <- read.delim(args[2]); +control_data_names <- colnames(control_data); + +## call the test function to implement IvC test +dwt_cor(input_data, input_data_names, control_data, control_data_names, test = "IvC", pdf = args[3], table = args[4]); +print("done with the correlation test");