diff execute_dwt_IvC_all.R @ 1:509993d9fdca draft default tip

"planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/dwt_ivc_all commit f929353ffb0623f2218d7dec459c7da62f3b0d24"
author devteam
date Mon, 06 Jul 2020 18:12:29 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/execute_dwt_IvC_all.R	Mon Jul 06 18:12:29 2020 +0000
@@ -0,0 +1,163 @@
+###########################################################################################
+## code to do wavelet Indel vs. Control
+## signal is the difference I-C; function is second moment i.e. variance from zero not mean
+## to perform wavelet transf. of signal, scale-by-scale analysis of the function
+## create null bands by permuting the original data series
+## generate plots and table matrix of correlation coefficients including p-values
+############################################################################################
+library("wavethresh");
+library("waveslim");
+
+options(echo = FALSE)
+
+## normalize data
+norm <- function(data) {
+    v <- (data - mean(data)) / sd(data);
+    if (sum(is.na(v)) >= 1) {
+        v <- data;
+    }
+    return(v);
+}
+
+dwt_cor <- function(data_short, names_short, data_long, names_long, test, pdf, table, filter = 4, bc = "symmetric", wf = "haar", boundary = "reflection") {
+    print(test);
+    print(pdf);
+    print(table);
+
+    pdf(file = pdf);
+    final_pvalue <- NULL;
+    title <- NULL;
+
+    short_levels <- wavethresh::wd(data_short[, 1], filter.number = filter, bc = bc)$nlevels;
+    title <- c("motif");
+    for (i in 1:short_levels) {
+        title <- c(title, paste(i, "moment2", sep = "_"), paste(i, "pval", sep = "_"), paste(i, "test", sep = "_"));
+    }
+    print(title);
+
+    ## loop to compare a vs a
+    for (i in seq_len(length(names_short))) {
+        wave1_dwt <- NULL;
+        m2_dwt <- NULL;
+        diff <- NULL;
+        var_dwt <- NULL;
+        out <- NULL;
+        out <- vector(length = length(title));
+
+        print(names_short[i]);
+        print(names_long[i]);
+
+        ## need exit if not comparing motif(a) vs motif(a)
+        if (names_short[i] != names_long[i]) {
+            stop(paste("motif", names_short[i], "is not the same as", names_long[i], sep = " "));
+        }
+        else {
+            ## signal is the difference I-C data sets
+            diff <- data_short[, i] - data_long[, i];
+
+            ## normalize the signal
+            diff <- norm(diff);
+
+            ## function is 2nd moment
+            ## 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2
+            wave1_dwt <- waveslim::dwt(diff, wf = wf, short_levels, boundary = boundary);
+            var_dwt <- waveslim::wave.variance(wave1_dwt);
+            m2_dwt <- vector(length = short_levels)
+            for (level in 1:short_levels) {
+                m2_dwt[level] <- var_dwt[level, 1] + (mean(diff)^2);
+            }
+
+            ## CI bands by permutation of time series
+            feature1 <- NULL;
+            feature2 <- NULL;
+            feature1 <- data_short[, i];
+            feature2 <- data_long[, i];
+            null <- NULL;
+            results <- NULL;
+            med <- NULL;
+            m2_25 <- NULL;
+            m2_975 <- NULL;
+
+            for (k in 1:1000) {
+                nk_1 <- NULL;
+                nk_2 <- NULL;
+                m2_null <- NULL;
+                var_null <- NULL;
+                null_levels <- NULL;
+                null_wave1 <- NULL;
+                null_diff <- NULL;
+                nk_1 <- sample(feature1, length(feature1), replace = FALSE);
+                nk_2 <- sample(feature2, length(feature2), replace = FALSE);
+                null_levels <- wavethresh::wd(nk_1, filter.number = filter, bc = bc)$nlevels;
+                null_diff <- nk_1 - nk_2;
+                null_diff <- norm(null_diff);
+                null_wave1 <- waveslim::dwt(null_diff, wf = wf, short_levels, boundary = boundary);
+                var_null <- waveslim::wave.variance(null_wave1);
+                m2_null <- vector(length = null_levels);
+                for (level in 1:null_levels) {
+                    m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2);
+                }
+                null <- rbind(null, m2_null);
+            }
+
+            null <- apply(null, 2, sort, na.last = TRUE);
+            m2_25 <- null[25, ];
+            m2_975 <- null[975, ];
+            med <- apply(null, 2, median, na.rm = TRUE);
+
+            ## plot
+            results <- cbind(m2_dwt, m2_25, m2_975);
+            matplot(results, type = "b", pch = "*", lty = 1, col = c(1, 2, 2), xlab = "Wavelet Scale", ylab = c("Wavelet 2nd Moment", test), main = (names_short[i]), cex.main = 0.75);
+            abline(h = 1);
+
+            ## get pvalues by comparison to null distribution
+            out <- c(names_short[i]);
+            for (m in seq_len(length(m2_dwt))) {
+                print(paste("scale", m, sep = " "));
+                print(paste("m2", m2_dwt[m], sep = " "));
+                print(paste("median", med[m], sep = " "));
+                out <- c(out, format(m2_dwt[m], digits = 4));
+                pv <- NULL;
+                if (is.na(m2_dwt[m])) {
+                    pv <- "NA";
+                }
+                else {
+                    if (m2_dwt[m] >= med[m]) {
+                        ## R tail test
+                        tail <- "R";
+                        pv <- (length(which(null[, m] >= m2_dwt[m]))) / (length(na.exclude(null[, m])));
+                    }
+                    else{
+                        if (m2_dwt[m] < med[m]) {
+                            ## L tail test
+                            tail <- "L";
+                            pv <- (length(which(null[, m] <= m2_dwt[m]))) / (length(na.exclude(null[, m])));
+                        }
+                    }
+                }
+                out <- c(out, pv);
+                print(pv);
+                out <- c(out, tail);
+            }
+            final_pvalue <- rbind(final_pvalue, out);
+            print(out);
+        }
+    }
+
+    colnames(final_pvalue) <- title;
+    write.table(final_pvalue, file = table, sep = "\t", quote = FALSE, row.names = FALSE);
+    dev.off();
+}
+## execute
+## read in data
+args <- commandArgs(trailingOnly = TRUE)
+
+input_data <- read.delim(args[1]);
+input_data_names <- colnames(input_data);
+
+control_data <- read.delim(args[2]);
+control_data_names <- colnames(control_data);
+
+## call the test function to implement IvC test
+dwt_cor(input_data, input_data_names, control_data, control_data_names, test = "IvC", pdf = args[3], table = args[4]);
+print("done with the correlation test");