Mercurial > repos > devteam > dwt_ivc_all
comparison execute_dwt_IvC_all.R @ 1:509993d9fdca draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-devteam/tree/master/tools/dwt_ivc_all commit f929353ffb0623f2218d7dec459c7da62f3b0d24"
author | devteam |
---|---|
date | Mon, 06 Jul 2020 18:12:29 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:91fad0f30fd3 | 1:509993d9fdca |
---|---|
1 ########################################################################################### | |
2 ## code to do wavelet Indel vs. Control | |
3 ## signal is the difference I-C; function is second moment i.e. variance from zero not mean | |
4 ## to perform wavelet transf. of signal, scale-by-scale analysis of the function | |
5 ## create null bands by permuting the original data series | |
6 ## generate plots and table matrix of correlation coefficients including p-values | |
7 ############################################################################################ | |
8 library("wavethresh"); | |
9 library("waveslim"); | |
10 | |
11 options(echo = FALSE) | |
12 | |
13 ## normalize data | |
14 norm <- function(data) { | |
15 v <- (data - mean(data)) / sd(data); | |
16 if (sum(is.na(v)) >= 1) { | |
17 v <- data; | |
18 } | |
19 return(v); | |
20 } | |
21 | |
22 dwt_cor <- function(data_short, names_short, data_long, names_long, test, pdf, table, filter = 4, bc = "symmetric", wf = "haar", boundary = "reflection") { | |
23 print(test); | |
24 print(pdf); | |
25 print(table); | |
26 | |
27 pdf(file = pdf); | |
28 final_pvalue <- NULL; | |
29 title <- NULL; | |
30 | |
31 short_levels <- wavethresh::wd(data_short[, 1], filter.number = filter, bc = bc)$nlevels; | |
32 title <- c("motif"); | |
33 for (i in 1:short_levels) { | |
34 title <- c(title, paste(i, "moment2", sep = "_"), paste(i, "pval", sep = "_"), paste(i, "test", sep = "_")); | |
35 } | |
36 print(title); | |
37 | |
38 ## loop to compare a vs a | |
39 for (i in seq_len(length(names_short))) { | |
40 wave1_dwt <- NULL; | |
41 m2_dwt <- NULL; | |
42 diff <- NULL; | |
43 var_dwt <- NULL; | |
44 out <- NULL; | |
45 out <- vector(length = length(title)); | |
46 | |
47 print(names_short[i]); | |
48 print(names_long[i]); | |
49 | |
50 ## need exit if not comparing motif(a) vs motif(a) | |
51 if (names_short[i] != names_long[i]) { | |
52 stop(paste("motif", names_short[i], "is not the same as", names_long[i], sep = " ")); | |
53 } | |
54 else { | |
55 ## signal is the difference I-C data sets | |
56 diff <- data_short[, i] - data_long[, i]; | |
57 | |
58 ## normalize the signal | |
59 diff <- norm(diff); | |
60 | |
61 ## function is 2nd moment | |
62 ## 2nd moment m_j = 1/N[sum_N(W_j + V_J)^2] = 1/N sum_N(W_j)^2 + (X_bar)^2 | |
63 wave1_dwt <- waveslim::dwt(diff, wf = wf, short_levels, boundary = boundary); | |
64 var_dwt <- waveslim::wave.variance(wave1_dwt); | |
65 m2_dwt <- vector(length = short_levels) | |
66 for (level in 1:short_levels) { | |
67 m2_dwt[level] <- var_dwt[level, 1] + (mean(diff)^2); | |
68 } | |
69 | |
70 ## CI bands by permutation of time series | |
71 feature1 <- NULL; | |
72 feature2 <- NULL; | |
73 feature1 <- data_short[, i]; | |
74 feature2 <- data_long[, i]; | |
75 null <- NULL; | |
76 results <- NULL; | |
77 med <- NULL; | |
78 m2_25 <- NULL; | |
79 m2_975 <- NULL; | |
80 | |
81 for (k in 1:1000) { | |
82 nk_1 <- NULL; | |
83 nk_2 <- NULL; | |
84 m2_null <- NULL; | |
85 var_null <- NULL; | |
86 null_levels <- NULL; | |
87 null_wave1 <- NULL; | |
88 null_diff <- NULL; | |
89 nk_1 <- sample(feature1, length(feature1), replace = FALSE); | |
90 nk_2 <- sample(feature2, length(feature2), replace = FALSE); | |
91 null_levels <- wavethresh::wd(nk_1, filter.number = filter, bc = bc)$nlevels; | |
92 null_diff <- nk_1 - nk_2; | |
93 null_diff <- norm(null_diff); | |
94 null_wave1 <- waveslim::dwt(null_diff, wf = wf, short_levels, boundary = boundary); | |
95 var_null <- waveslim::wave.variance(null_wave1); | |
96 m2_null <- vector(length = null_levels); | |
97 for (level in 1:null_levels) { | |
98 m2_null[level] <- var_null[level, 1] + (mean(null_diff)^2); | |
99 } | |
100 null <- rbind(null, m2_null); | |
101 } | |
102 | |
103 null <- apply(null, 2, sort, na.last = TRUE); | |
104 m2_25 <- null[25, ]; | |
105 m2_975 <- null[975, ]; | |
106 med <- apply(null, 2, median, na.rm = TRUE); | |
107 | |
108 ## plot | |
109 results <- cbind(m2_dwt, m2_25, m2_975); | |
110 matplot(results, type = "b", pch = "*", lty = 1, col = c(1, 2, 2), xlab = "Wavelet Scale", ylab = c("Wavelet 2nd Moment", test), main = (names_short[i]), cex.main = 0.75); | |
111 abline(h = 1); | |
112 | |
113 ## get pvalues by comparison to null distribution | |
114 out <- c(names_short[i]); | |
115 for (m in seq_len(length(m2_dwt))) { | |
116 print(paste("scale", m, sep = " ")); | |
117 print(paste("m2", m2_dwt[m], sep = " ")); | |
118 print(paste("median", med[m], sep = " ")); | |
119 out <- c(out, format(m2_dwt[m], digits = 4)); | |
120 pv <- NULL; | |
121 if (is.na(m2_dwt[m])) { | |
122 pv <- "NA"; | |
123 } | |
124 else { | |
125 if (m2_dwt[m] >= med[m]) { | |
126 ## R tail test | |
127 tail <- "R"; | |
128 pv <- (length(which(null[, m] >= m2_dwt[m]))) / (length(na.exclude(null[, m]))); | |
129 } | |
130 else{ | |
131 if (m2_dwt[m] < med[m]) { | |
132 ## L tail test | |
133 tail <- "L"; | |
134 pv <- (length(which(null[, m] <= m2_dwt[m]))) / (length(na.exclude(null[, m]))); | |
135 } | |
136 } | |
137 } | |
138 out <- c(out, pv); | |
139 print(pv); | |
140 out <- c(out, tail); | |
141 } | |
142 final_pvalue <- rbind(final_pvalue, out); | |
143 print(out); | |
144 } | |
145 } | |
146 | |
147 colnames(final_pvalue) <- title; | |
148 write.table(final_pvalue, file = table, sep = "\t", quote = FALSE, row.names = FALSE); | |
149 dev.off(); | |
150 } | |
151 ## execute | |
152 ## read in data | |
153 args <- commandArgs(trailingOnly = TRUE) | |
154 | |
155 input_data <- read.delim(args[1]); | |
156 input_data_names <- colnames(input_data); | |
157 | |
158 control_data <- read.delim(args[2]); | |
159 control_data_names <- colnames(control_data); | |
160 | |
161 ## call the test function to implement IvC test | |
162 dwt_cor(input_data, input_data_names, control_data, control_data_names, test = "IvC", pdf = args[3], table = args[4]); | |
163 print("done with the correlation test"); |