0
|
1 ##########
|
|
2 args <- commandArgs(TRUE)
|
|
3 nTrain <- read.csv(args[1],row.names= 1, header = T) # example nTrain.csv file of unknown activity
|
|
4 #save(nTrain,file = "nTrain.RData")
|
|
5 #load("nTrain.RData")
|
|
6 load(args[2]) # model generated from previous programn
|
|
7 newdata <- nTrain
|
|
8 modelFit <- Fit
|
|
9 ###########
|
|
10 # input csv file must contaion the exact same column as used in model building #
|
|
11 # Also do pre-proccessing by means of centering and scaling
|
|
12
|
|
13 library(caret)
|
|
14 reqcol <- Fit$finalModel$xNames
|
|
15 newdata <- newdata[,reqcol]
|
|
16 newdata1 <- preProcess(newdata, method = c("center", "scale"))
|
|
17 newdata11 <- predict(newdata1,newdata)
|
|
18 ###########
|
|
19 library(stats)
|
|
20 testpredict <- predict(modelFit,newdata11)
|
|
21 #table(testpredict)
|
|
22 #save(testpredict, file = "predict.RData")
|
|
23 #load("predict.RData")
|
|
24 names <- as.data.frame(rownames(nTrain))
|
|
25 colnames(names) <- "COMPOUND"
|
|
26 activity <- as.data.frame(testpredict)
|
|
27 colnames(activity) <- "ACTIVITY"
|
|
28 dw <- cbind(names,activity)
|
|
29 #write.table(dw,file=args[3])
|
|
30 write.csv(dw,file=args[3],row.names=FALSE)
|
|
31
|
|
32
|
|
33 ~
|