view docs/scripts/txt/CalculatePhysicochemicalProperties.txt @ 0:4816e4a8ae95 draft default tip

Uploaded
author deepakjadmin
date Wed, 20 Jan 2016 09:23:18 -0500
parents
children
line wrap: on
line source

NAME
    CalculatePhysicochemicalProperties.pl - Calculate physicochemical
    properties for SD files

SYNOPSIS
    CalculatePhysicochemicalProperties.pl SDFile(s)...

    PhysicochemicalProperties.pl [--AromaticityModel *AromaticityModelType*]
    [--CompoundID DataFieldName or LabelPrefixString] [--CompoundIDLabel
    text] [--CompoundIDMode] [--DataFields "FieldLabel1, FieldLabel2,..."]
    [-d, --DataFieldsMode All | Common | Specify | CompoundID] [-f, --Filter
    Yes | No] [-h, --help] [--HydrogenBonds HBondsType1 | HBondsType2] [-k,
    --KeepLargestComponent Yes | No] [-m, --mode All | RuleOf5 | RuleOf3 |
    "name1, [name2,...]"] [--MolecularComplexity *Name,Value,
    [Name,Value,...]*] [--OutDelim comma | tab | semicolon] [--output SD |
    text | both] [-o, --overwrite] [--Precision
    Name,Number,[Name,Number,..]] [--RotatableBonds Name,Value,
    [Name,Value,...]] [--RuleOf3Violations Yes | No] [--RuleOf5Violations
    Yes | No] [-q, --quote Yes | No] [-r, --root RootName] [-w, --WorkingDir
    dirname] SDFile(s)...

DESCRIPTION
    Calculate physicochemical properties for *SDFile(s)* and create
    appropriate SD or CSV/TSV text file(s) containing calculated properties.

    The current release of MayaChemTools supports the calculation of these
    physicochemical properties:

        MolecularWeight, ExactMass, HeavyAtoms, Rings, AromaticRings,
        van der Waals MolecularVolume [ Ref 93 ], RotatableBonds,
        HydrogenBondDonors, HydrogenBondAcceptors, LogP and
        Molar Refractivity (SLogP and SMR) [ Ref 89 ], Topological Polar
        Surface Area (TPSA) [ Ref 90 ], Fraction of SP3 carbons (Fsp3Carbons)
        and SP3 carbons (Sp3Carbons) [ Ref 115-116, Ref 119 ],
        MolecularComplexity [ Ref 117-119 ]

    Multiple SDFile names are separated by spaces. The valid file extensions
    are *.sdf* and *.sd*. All other file names are ignored. All the SD files
    in a current directory can be specified either by **.sdf* or the current
    directory name.

    The calculation of molecular complexity using *MolecularComplexityType*
    parameter corresponds to the number of bits-set or unique keys [ Ref
    117-119 ] in molecular fingerprints. Default value for
    *MolecularComplexityType*: *MACCSKeys* of size 166. The calculation of
    MACCSKeys is relatively expensive and can take rather substantial amount
    of time.

OPTIONS
    --AromaticityModel *MDLAromaticityModel | TriposAromaticityModel |
    MMFFAromaticityModel | ChemAxonBasicAromaticityModel |
    ChemAxonGeneralAromaticityModel | DaylightAromaticityModel |
    MayaChemToolsAromaticityModel*
        Specify aromaticity model to use during detection of aromaticity.
        Possible values in the current release are: *MDLAromaticityModel,
        TriposAromaticityModel, MMFFAromaticityModel,
        ChemAxonBasicAromaticityModel, ChemAxonGeneralAromaticityModel,
        DaylightAromaticityModel or MayaChemToolsAromaticityModel*. Default
        value: *MayaChemToolsAromaticityModel*.

        The supported aromaticity model names along with model specific
        control parameters are defined in AromaticityModelsData.csv, which
        is distributed with the current release and is available under
        lib/data directory. Molecule.pm module retrieves data from this file
        during class instantiation and makes it available to method
        DetectAromaticity for detecting aromaticity corresponding to a
        specific model.

    --CompoundID *DataFieldName or LabelPrefixString*
        This value is --CompoundIDMode specific and indicates how compound
        ID is generated.

        For *DataField* value of --CompoundIDMode option, it corresponds to
        datafield label name whose value is used as compound ID; otherwise,
        it's a prefix string used for generating compound IDs like
        LabelPrefixString<Number>. Default value, *Cmpd*, generates compound
        IDs which look like Cmpd<Number>.

        Examples for *DataField* value of --CompoundIDMode:

            MolID
            ExtReg

        Examples for *LabelPrefix* or *MolNameOrLabelPrefix* value of
        --CompoundIDMode:

            Compound

        The value specified above generates compound IDs which correspond to
        Compound<Number> instead of default value of Cmpd<Number>.

    --CompoundIDLabel *text*
        Specify compound ID column label for CSV/TSV text file(s) used
        during *CompoundID* value of --DataFieldsMode option. Default value:
        *CompoundID*.

    --CompoundIDMode *DataField | MolName | LabelPrefix |
    MolNameOrLabelPrefix*
        Specify how to generate compound IDs and write to CSV/TSV text
        file(s) along with calculated physicochemical properties for *text |
        both* values of --output option: use a *SDFile(s)* datafield value;
        use molname line from *SDFile(s)*; generate a sequential ID with
        specific prefix; use combination of both MolName and LabelPrefix
        with usage of LabelPrefix values for empty molname lines.

        Possible values: *DataField | MolName | LabelPrefix |
        MolNameOrLabelPrefix*. Default value: *LabelPrefix*.

        For *MolNameAndLabelPrefix* value of --CompoundIDMode, molname line
        in *SDFile(s)* takes precedence over sequential compound IDs
        generated using *LabelPrefix* and only empty molname values are
        replaced with sequential compound IDs.

        This is only used for *CompoundID* value of --DataFieldsMode option.

    --DataFields *"FieldLabel1,FieldLabel2,..."*
        Comma delimited list of *SDFiles(s)* data fields to extract and
        write to CSV/TSV text file(s) along with calculated physicochemical
        properties for *text | both* values of --output option.

        This is only used for *Specify* value of --DataFieldsMode option.

        Examples:

            Extreg
            MolID,CompoundName

    -d, --DataFieldsMode *All | Common | Specify | CompoundID*
        Specify how data fields in *SDFile(s)* are transferred to output
        CSV/TSV text file(s) along with calculated physicochemical
        properties for *text | both* values of --output option: transfer all
        SD data field; transfer SD data files common to all compounds;
        extract specified data fields; generate a compound ID using molname
        line, a compound prefix, or a combination of both. Possible values:
        *All | Common | specify | CompoundID*. Default value: *CompoundID*.

    -f, --Filter *Yes | No*
        Specify whether to check and filter compound data in SDFile(s).
        Possible values: *Yes or No*. Default value: *Yes*.

        By default, compound data is checked before calculating
        physiochemical properties and compounds containing atom data
        corresponding to non-element symbols or no atom data are ignored.

    -h, --help
        Print this help message.

    --HydrogenBonds *HBondsType1 | HBondsType2*
        Parameters to control calculation of hydrogen bond donors and
        acceptors. Possible values: *HBondsType1, HydrogenBondsType1,
        HBondsType2, HydrogenBondsType2*. Default value: *HBondsType2* which
        corresponds to RuleOf5 definition for number of hydrogen bond donors
        and acceptors.

        The current release of MayaChemTools supports identification of two
        types of hydrogen bond donor and acceptor atoms with these names:

            HBondsType1 or HydrogenBondsType1
            HBondsType2 or HydrogenBondsType2

        The names of these hydrogen bond types are rather arbitrary.
        However, their definitions have specific meaning and are as follows:

            HydrogenBondsType1 [ Ref 60-61, Ref 65-66 ]:

                Donor: NH, NH2, OH - Any N and O with available H
                Acceptor: N[!H], O - Any N without available H and any O

            HydrogenBondsType2 [ Ref 91 ]:

                Donor: NH, NH2, OH - N and O with available H
                Acceptor: N, O - And N and O

    -k, --KeepLargestComponent *Yes | No*
        Calculate physicochemical properties for only the largest component
        in molecule. Possible values: *Yes or No*. Default value: *Yes*.

        For molecules containing multiple connected components,
        physicochemical properties can be calculated in two different ways:
        use all connected components or just the largest connected
        component. By default, all atoms except for the largest connected
        component are deleted before calculation of physicochemical
        properties.

    -m, --mode *All | RuleOf5 | RuleOf3 | "name1, [name2,...]"*
        Specify physicochemical properties to calculate for SDFile(s):
        calculate all available physical chemical properties; calculate
        properties corresponding to Rule of 5; or use a comma delimited list
        of supported physicochemical properties. Possible values: *All |
        RuleOf5 | RuleOf3 | "name1, [name2,...]"*.

        Default value: *MolecularWeight, HeavyAtoms, MolecularVolume,
        RotatableBonds, HydrogenBondDonors, HydrogenBondAcceptors, SLogP,
        TPSA*. These properties are calculated by default.

        *RuleOf5* [ Ref 91 ] includes these properties: *MolecularWeight,
        HydrogenBondDonors, HydrogenBondAcceptors, SLogP*. *RuleOf5* states:
        MolecularWeight <= 500, HydrogenBondDonors <= 5,
        HydrogenBondAcceptors <= 10, and logP <= 5.

        *RuleOf3* [ Ref 92 ] includes these properties: *MolecularWeight,
        RotatableBonds, HydrogenBondDonors, HydrogenBondAcceptors, SLogP,
        TPSA*. *RuleOf3* states: MolecularWeight <= 300, RotatableBonds <=
        3, HydrogenBondDonors <= 3, HydrogenBondAcceptors <= 3, logP <= 3,
        and TPSA <= 60.

        *All* calculates all supported physicochemical properties:
        *MolecularWeight, ExactMass, HeavyAtoms, Rings, AromaticRings,
        MolecularVolume, RotatableBonds, HydrogenBondDonors,
        HydrogenBondAcceptors, SLogP, SMR, TPSA, Fsp3Carbons, Sp3Carbons,
        MolecularComplexity*.

    --MolecularComplexity *Name,Value, [Name,Value,...]*
        Parameters to control calculation of molecular complexity: it's a
        comma delimited list of parameter name and value pairs.

        Possible parameter names: *MolecularComplexityType,
        AtomIdentifierType, AtomicInvariantsToUse, FunctionalClassesToUse,
        MACCSKeysSize, NeighborhoodRadius, MinPathLength, MaxPathLength,
        UseBondSymbols, MinDistance, MaxDistance, UseTriangleInequality,
        DistanceBinSize, NormalizationMethodology*.

        The valid paramater valuse for each parameter name are described in
        the following sections.

        The current release of MayaChemTools supports calculation of
        molecular complexity using *MolecularComplexityType* parameter
        corresponding to the number of bits-set or unique keys [ Ref 117-119
        ] in molecular fingerprints. The valid values for
        *MolecularComplexityType* are:

            AtomTypesFingerprints
            ExtendedConnectivityFingerprints
            MACCSKeys
            PathLengthFingerprints
            TopologicalAtomPairsFingerprints
            TopologicalAtomTripletsFingerprints
            TopologicalAtomTorsionsFingerprints
            TopologicalPharmacophoreAtomPairsFingerprints
            TopologicalPharmacophoreAtomTripletsFingerprints

        Default value for *MolecularComplexityType*: *MACCSKeys*.

        *AtomIdentifierType* parameter name correspods to atom types used
        during generation of fingerprints. The valid values for
        *AtomIdentifierType* are: *AtomicInvariantsAtomTypes,
        DREIDINGAtomTypes, EStateAtomTypes, FunctionalClassAtomTypes,
        MMFF94AtomTypes, SLogPAtomTypes, SYBYLAtomTypes, TPSAAtomTypes,
        UFFAtomTypes*. *AtomicInvariantsAtomTypes* is not supported for
        during the following values of *MolecularComplexityType*:
        *MACCSKeys, TopologicalPharmacophoreAtomPairsFingerprints,
        TopologicalPharmacophoreAtomTripletsFingerprints*.
        *FunctionalClassAtomTypes* is the only valid value for
        *AtomIdentifierType* for topological pharmacophore fingerprints.

        Default value for *AtomIdentifierType*: *AtomicInvariantsAtomTypes*
        for all except topological pharmacophore fingerprints where it is
        *FunctionalClassAtomTypes*.

        *AtomicInvariantsToUse* parameter name and values are used during
        *AtomicInvariantsAtomTypes* value of parameter *AtomIdentifierType*.
        It's a list of space separated valid atomic invariant atom types.

        Possible values for atomic invariants are: *AS, X, BO, LBO, SB, DB,
        TB, H, Ar, RA, FC, MN, SM*. Default value for
        *AtomicInvariantsToUse* parameter are set differently for different
        fingerprints using *MolecularComplexityType* parameter as shown
        below:

            MolecularComplexityType              AtomicInvariantsToUse

            AtomTypesFingerprints                AS X BO H FC
            TopologicalAtomPairsFingerprints     AS X BO H FC
            TopologicalAtomTripletsFingerprints  AS X BO H FC
            TopologicalAtomTorsionsFingerprints  AS X BO H FC

            ExtendedConnectivityFingerprints     AS X  BO H FC MN
            PathLengthFingerprints               AS

        The atomic invariants abbreviations correspond to:

            AS = Atom symbol corresponding to element symbol

            X<n>   = Number of non-hydrogen atom neighbors or heavy atoms
            BO<n> = Sum of bond orders to non-hydrogen atom neighbors or heavy atoms
            LBO<n> = Largest bond order of non-hydrogen atom neighbors or heavy atoms
            SB<n> = Number of single bonds to non-hydrogen atom neighbors or heavy atoms
            DB<n> = Number of double bonds to non-hydrogen atom neighbors or heavy atoms
            TB<n> = Number of triple bonds to non-hydrogen atom neighbors or heavy atoms
            H<n>   = Number of implicit and explicit hydrogens for atom
            Ar     = Aromatic annotation indicating whether atom is aromatic
            RA     = Ring atom annotation indicating whether atom is a ring
            FC<+n/-n> = Formal charge assigned to atom
            MN<n> = Mass number indicating isotope other than most abundant isotope
            SM<n> = Spin multiplicity of atom. Possible values: 1 (singlet), 2 (doublet) or
                    3 (triplet)

        Atom type generated by AtomTypes::AtomicInvariantsAtomTypes class
        corresponds to:

            AS.X<n>.BO<n>.LBO<n>.<SB><n>.<DB><n>.<TB><n>.H<n>.Ar.RA.FC<+n/-n>.MN<n>.SM<n>

        Except for AS which is a required atomic invariant in atom types,
        all other atomic invariants are optional. Atom type specification
        doesn't include atomic invariants with zero or undefined values.

        In addition to usage of abbreviations for specifying atomic
        invariants, the following descriptive words are also allowed:

            X : NumOfNonHydrogenAtomNeighbors or NumOfHeavyAtomNeighbors
            BO : SumOfBondOrdersToNonHydrogenAtoms or SumOfBondOrdersToHeavyAtoms
            LBO : LargestBondOrderToNonHydrogenAtoms or LargestBondOrderToHeavyAtoms
            SB :  NumOfSingleBondsToNonHydrogenAtoms or NumOfSingleBondsToHeavyAtoms
            DB : NumOfDoubleBondsToNonHydrogenAtoms or NumOfDoubleBondsToHeavyAtoms
            TB : NumOfTripleBondsToNonHydrogenAtoms or NumOfTripleBondsToHeavyAtoms
            H :  NumOfImplicitAndExplicitHydrogens
            Ar : Aromatic
            RA : RingAtom
            FC : FormalCharge
            MN : MassNumber
            SM : SpinMultiplicity

        *AtomTypes::AtomicInvariantsAtomTypes* module is used to assign
        atomic invariant atom types.

        *FunctionalClassesToUse* parameter name and values are used during
        *FunctionalClassAtomTypes* value of parameter *AtomIdentifierType*.
        It's a list of space separated valid atomic invariant atom types.

        Possible values for atom functional classes are: *Ar, CA, H, HBA,
        HBD, Hal, NI, PI, RA*.

        Default value for *FunctionalClassesToUse* parameter is set to:

            HBD HBA PI NI Ar Hal

        for all fingerprints except for the following two
        *MolecularComplexityType* fingerints:

            MolecularComplexityType                           FunctionalClassesToUse

            TopologicalPharmacophoreAtomPairsFingerprints     HBD HBA P, NI H
            TopologicalPharmacophoreAtomTripletsFingerprints  HBD HBA PI NI H Ar

        The functional class abbreviations correspond to:

            HBD: HydrogenBondDonor
            HBA: HydrogenBondAcceptor
            PI :  PositivelyIonizable
            NI : NegativelyIonizable
            Ar : Aromatic
            Hal : Halogen
            H : Hydrophobic
            RA : RingAtom
            CA : ChainAtom

         Functional class atom type specification for an atom corresponds to:

            Ar.CA.H.HBA.HBD.Hal.NI.PI.RA

        *AtomTypes::FunctionalClassAtomTypes* module is used to assign
        functional class atom types. It uses following definitions [ Ref
        60-61, Ref 65-66 ]:

            HydrogenBondDonor: NH, NH2, OH
            HydrogenBondAcceptor: N[!H], O
            PositivelyIonizable: +, NH2
            NegativelyIonizable: -, C(=O)OH, S(=O)OH, P(=O)OH

        *MACCSKeysSize* parameter name is only used during *MACCSKeys* value
        of *MolecularComplexityType* and corresponds to the size of MACCS
        key set. Possible values: *166 or 322*. Default value: *166*.

        *NeighborhoodRadius* parameter name is only used during
        *ExtendedConnectivityFingerprints* value of
        *MolecularComplexityType* and corresponds to atomic neighborhoods
        radius for generating extended connectivity fingerprints. Possible
        values: positive integer. Default value: *2*.

        *MinPathLength* and *MaxPathLength* parameters are only used during
        *PathLengthFingerprints* value of *MolecularComplexityType* and
        correspond to minimum and maximum path lengths to use for generating
        path length fingerprints. Possible values: positive integers.
        Default value: *MinPathLength - 1*; *MaxPathLength - 8*.

        *UseBondSymbols* parameter is only used during
        *PathLengthFingerprints* value of *MolecularComplexityType* and
        indicates whether bond symbols are included in atom path strings
        used to generate path length fingerprints. Possible value: *Yes or
        No*. Default value: *Yes*.

        *MinDistance* and *MaxDistance* parameters are only used during
        *TopologicalAtomPairsFingerprints* and
        *TopologicalAtomTripletsFingerprints* values of
        *MolecularComplexityType* and correspond to minimum and maximum bond
        distance between atom pairs during topological pharmacophore
        fingerprints. Possible values: positive integers. Default value:
        *MinDistance - 1*; *MaxDistance - 10*.

        *UseTriangleInequality* parameter is used during these values for
        *MolecularComplexityType*: *TopologicalAtomTripletsFingerprints* and
        *TopologicalPharmacophoreAtomTripletsFingerprints*. Possible values:
        *Yes or No*. It determines wheter to apply triangle inequality to
        distance triplets. Default value:
        *TopologicalAtomTripletsFingerprints - No*;
        *TopologicalPharmacophoreAtomTripletsFingerprints - Yes*.

        *DistanceBinSize* parameter is used during
        *TopologicalPharmacophoreAtomTripletsFingerprints* value of
        *MolecularComplexityType* and correspons to distance bin size used
        for binning distances during generation of topological pharmacophore
        atom triplets fingerprints. Possible value: positive integer.
        Default value: *2*.

        *NormalizationMethodology* is only used for these values for
        *MolecularComplexityType*: *ExtendedConnectivityFingerprints*,
        *TopologicalPharmacophoreAtomPairsFingerprints* and
        *TopologicalPharmacophoreAtomTripletsFingerprints*. It corresponds
        to normalization methodology to use for scaling the number of
        bits-set or unique keys during generation of fingerprints. Possible
        values during *ExtendedConnectivityFingerprints*: *None or
        ByHeavyAtomsCount*; Default value: *None*. Possible values during
        topological pharmacophore atom pairs and tripletes fingerprints:
        *None or ByPossibleKeysCount*; Default value: *None*.
        *ByPossibleKeysCount* corresponds to total number of possible
        topological pharmacophore atom pairs or triplets in a molecule.

        Examples of *MolecularComplexity* name and value parameters:

            MolecularComplexityType,AtomTypesFingerprints,AtomIdentifierType,
            AtomicInvariantsAtomTypes,AtomicInvariantsToUse,AS X BO H FC

            MolecularComplexityType,ExtendedConnectivityFingerprints,
            AtomIdentifierType,AtomicInvariantsAtomTypes,
            AtomicInvariantsToUse,AS X BO H FC MN,NeighborhoodRadius,2,
            NormalizationMethodology,None

            MolecularComplexityType,MACCSKeys,MACCSKeysSize,166

            MolecularComplexityType,PathLengthFingerprints,AtomIdentifierType,
            AtomicInvariantsAtomTypes,AtomicInvariantsToUse,AS,MinPathLength,
            1,MaxPathLength,8,UseBondSymbols,Yes

            MolecularComplexityType,TopologicalAtomPairsFingerprints,
            AtomIdentifierType,AtomicInvariantsAtomTypes,AtomicInvariantsToUse,
            AS X BO H FC,MinDistance,1,MaxDistance,10

            MolecularComplexityType,TopologicalAtomTripletsFingerprints,
            AtomIdentifierType,AtomicInvariantsAtomTypes,AtomicInvariantsToUse,
            AS X BO H FC,MinDistance,1,MaxDistance,10,UseTriangleInequality,No

            MolecularComplexityType,TopologicalAtomTorsionsFingerprints,
            AtomIdentifierType,AtomicInvariantsAtomTypes,AtomicInvariantsToUse,
            AS X BO H FC

            MolecularComplexityType,TopologicalPharmacophoreAtomPairsFingerprints,
            AtomIdentifierType,FunctionalClassAtomTypes,FunctionalClassesToUse,
            HBD HBA PI NI H,MinDistance,1,MaxDistance,10,NormalizationMethodology,
            None

            MolecularComplexityType,TopologicalPharmacophoreAtomTripletsFingerprints,
            AtomIdentifierType,FunctionalClassAtomTypes,FunctionalClassesToUse,
            HBD HBA PI NI H Ar,MinDistance,1,MaxDistance,10,NormalizationMethodology,
            None,UseTriangleInequality,Yes,NormalizationMethodology,None,
            DistanceBinSize,2

    --OutDelim *comma | tab | semicolon*
        Delimiter for output CSV/TSV text file(s). Possible values: *comma,
        tab, or semicolon* Default value: *comma*.

    --output *SD | text | both*
        Type of output files to generate. Possible values: *SD, text, or
        both*. Default value: *text*.

    -o, --overwrite
        Overwrite existing files.

    --Precision *Name,Number,[Name,Number,..]*
        Precision of calculated property values in the output file: it's a
        comma delimited list of property name and precision value pairs.
        Possible property names: *MolecularWeight, ExactMass*. Possible
        values: positive intergers. Default value: *MolecularWeight,2,
        ExactMass,4*.

        Examples:

            ExactMass,3
            MolecularWeight,1,ExactMass,2

    -q, --quote *Yes | No*
        Put quote around column values in output CSV/TSV text file(s).
        Possible values: *Yes or No*. Default value: *Yes*.

    -r, --root *RootName*
        New file name is generated using the root: <Root>.<Ext>. Default for
        new file names: <SDFileName><PhysicochemicalProperties>.<Ext>. The
        file type determines <Ext> value. The sdf, csv, and tsv <Ext> values
        are used for SD, comma/semicolon, and tab delimited text files,
        respectively.This option is ignored for multiple input files.

    --RotatableBonds *Name,Value, [Name,Value,...]*
        Parameters to control calculation of rotatable bonds [ Ref 92 ]:
        it's a comma delimited list of parameter name and value pairs.
        Possible parameter names: *IgnoreTerminalBonds,
        IgnoreBondsToTripleBonds, IgnoreAmideBonds, IgnoreThioamideBonds,
        IgnoreSulfonamideBonds*. Possible parameter values: *Yes or No*. By
        default, value of all parameters is set to *Yes*.

    --RuleOf3Violations *Yes | No*
        Specify whether to calculate RuleOf3Violations for SDFile(s).
        Possible values: *Yes or No*. Default value: *No*.

        For *Yes* value of RuleOf3Violations, in addition to calculating
        total number of RuleOf3 violations, individual violations for
        compounds are also written to output files.

        RuleOf3 [ Ref 92 ] states: MolecularWeight <= 300, RotatableBonds <=
        3, HydrogenBondDonors <= 3, HydrogenBondAcceptors <= 3, logP <= 3,
        and TPSA <= 60.

    --RuleOf5Violations *Yes | No*
        Specify whether to calculate RuleOf5Violations for SDFile(s).
        Possible values: *Yes or No*. Default value: *No*.

        For *Yes* value of RuleOf5Violations, in addition to calculating
        total number of RuleOf5 violations, individual violations for
        compounds are also written to output files.

        RuleOf5 [ Ref 91 ] states: MolecularWeight <= 500,
        HydrogenBondDonors <= 5, HydrogenBondAcceptors <= 10, and logP <= 5.

    --TPSA *Name,Value, [Name,Value,...]*
        Parameters to control calculation of TPSA: it's a comma delimited
        list of parameter name and value pairs. Possible parameter names:
        *IgnorePhosphorus, IgnoreSulfur*. Possible parameter values: *Yes or
        No*. By default, value of all parameters is set to *Yes*.

        By default, TPSA atom contributions from Phosphorus and Sulfur atoms
        are not included during TPSA calculations. [ Ref 91 ]

    -w, --WorkingDir *DirName*
        Location of working directory. Default value: current directory.

EXAMPLES
    To calculate default set of physicochemical properties -
    MolecularWeight, HeavyAtoms, MolecularVolume, RotatableBonds,
    HydrogenBondDonor, HydrogenBondAcceptors, SLogP, TPSA - and generate a
    SamplePhysicochemicalProperties.csv file containing sequential compound
    IDs along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -o Sample.sdf

    To calculate all available physicochemical properties and generate both
    SampleAllProperties.csv and SampleAllProperties.sdf files containing
    sequential compound IDs in CSV file along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m All --output both
          -r SampleAllProperties -o Sample.sdf

    To calculate RuleOf5 physicochemical properties and generate a
    SampleRuleOf5Properties.csv file containing sequential compound IDs
    along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m RuleOf5
          -r SampleRuleOf5Properties -o Sample.sdf

    To calculate RuleOf5 physicochemical properties along with counting
    RuleOf5 violations and generate a SampleRuleOf5Properties.csv file
    containing sequential compound IDs along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m RuleOf5 --RuleOf5Violations Yes
          -r SampleRuleOf5Properties -o Sample.sdf

    To calculate RuleOf3 physicochemical properties and generate a
    SampleRuleOf3Properties.csv file containing sequential compound IDs
    along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m RuleOf3
          -r SampleRuleOf3Properties -o Sample.sdf

    To calculate RuleOf3 physicochemical properties along with counting
    RuleOf3 violations and generate a SampleRuleOf3Properties.csv file
    containing sequential compound IDs along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m RuleOf3 --RuleOf3Violations Yes
          -r SampleRuleOf3Properties -o Sample.sdf

    To calculate a specific set of physicochemical properties and generate a
    SampleProperties.csv file containing sequential compound IDs along with
    properties data, type:

        % CalculatePhysicochemicalProperties.pl -m "Rings,AromaticRings"
          -r SampleProperties -o Sample.sdf

    To calculate HydrogenBondDonors and HydrogenBondAcceptors using
    HydrogenBondsType1 definition and generate a SampleProperties.csv file
    containing sequential compound IDs along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m "HydrogenBondDonors,HydrogenBondAcceptors"
          --HydrogenBonds HBondsType1 -r SampleProperties -o Sample.sdf

    To calculate TPSA using sulfur and phosphorus atoms along with nitrogen
    and oxygen atoms and generate a SampleProperties.csv file containing
    sequential compound IDs along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m "TPSA" --TPSA "IgnorePhosphorus,No,
          IgnoreSulfur,No" -r SampleProperties -o Sample.sdf

    To calculate MolecularComplexity using extendend connectivity
    fingerprints corresponding to atom neighborhood radius of 2 with atomic
    invariant atom types without any scaling and generate a
    SampleProperties.csv file containing sequential compound IDs along with
    properties data, type:

        % CalculatePhysicochemicalProperties.pl -m MolecularComplexity --MolecularComplexity
          "MolecularComplexityType,ExtendedConnectivityFingerprints,NeighborhoodRadius,2,
          AtomIdentifierType, AtomicInvariantsAtomTypes,
          AtomicInvariantsToUse,AS X BO H FC MN,NormalizationMethodology,None"
          -r SampleProperties -o Sample.sdf

    To calculate RuleOf5 physicochemical properties along with counting
    RuleOf5 violations and generate a SampleRuleOf5Properties.csv file
    containing compound IDs from molecule name line along with properties
    data, type:

        % CalculatePhysicochemicalProperties.pl -m RuleOf5 --RuleOf5Violations Yes
          --DataFieldsMode CompoundID --CompoundIDMode MolName
          -r SampleRuleOf5Properties -o Sample.sdf

    To calculate all available physicochemical properties and generate a
    SampleAllProperties.csv file containing compound ID using specified data
    field along with along with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m All
          --DataFieldsMode CompoundID --CompoundIDMode DataField --CompoundID Mol_ID
          -r SampleAllProperties -o Sample.sdf

    To calculate all available physicochemical properties and generate a
    SampleAllProperties.csv file containing compound ID using combination of
    molecule name line and an explicit compound prefix along with properties
    data, type:

        % CalculatePhysicochemicalProperties.pl -m All
          --DataFieldsMode CompoundID --CompoundIDMode MolnameOrLabelPrefix
          --CompoundID Cmpd --CompoundIDLabel MolID  -r SampleAllProperties
          -o Sample.sdf

    To calculate all available physicochemical properties and generate a
    SampleAllProperties.csv file containing specific data fields columns
    along with with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m All
          --DataFieldsMode Specify --DataFields Mol_ID -r SampleAllProperties
          -o Sample.sdf

    To calculate all available physicochemical properties and generate a
    SampleAllProperties.csv file containing common data fields columns along
    with with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m All
          --DataFieldsMode Common -r SampleAllProperties -o Sample.sdf

    To calculate all available physicochemical properties and generate both
    SampleAllProperties.csv and CSV files containing all data fields columns
    in CSV files along with with properties data, type:

        % CalculatePhysicochemicalProperties.pl -m All
          --DataFieldsMode All  --output both -r SampleAllProperties
          -o Sample.sdf

AUTHOR
    Manish Sud <msud@san.rr.com>

SEE ALSO
    ExtractFromSDtFiles.pl, ExtractFromTextFiles.pl, InfoSDFiles.pl,
    InfoTextFiles.pl

COPYRIGHT
    Copyright (C) 2015 Manish Sud. All rights reserved.

    This file is part of MayaChemTools.

    MayaChemTools is free software; you can redistribute it and/or modify it
    under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 3 of the License, or (at
    your option) any later version.