diff RScript.r @ 11:866d22e60e60 draft

Uploaded
author davidvanzessen
date Thu, 13 Nov 2014 10:33:04 -0500
parents 06777331fbd8
children 50260274967c
line wrap: on
line diff
--- a/RScript.r	Thu May 15 09:27:22 2014 -0400
+++ b/RScript.r	Thu Nov 13 10:33:04 2014 -0500
@@ -1,125 +1,173 @@
-#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
-
-args <- commandArgs(trailingOnly = TRUE)
-
-inFile = args[1]
-outFile = args[2]
-outDir = args[3]
-clonalType = args[4]
-species = args[5]
-locus = args[6]
-selection = args[7]
-
-
+# ---------------------- load/install packages ----------------------
 
 if (!("gridExtra" %in% rownames(installed.packages()))) {
-	install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") 
+  install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") 
 }
 library(gridExtra)
 if (!("ggplot2" %in% rownames(installed.packages()))) {
-	install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
+  install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
 }
-require(ggplot2)
+library(ggplot2)
 if (!("plyr" %in% rownames(installed.packages()))) {
-	install.packages("plyr", repos="http://cran.xl-mirror.nl/") 
+  install.packages("plyr", repos="http://cran.xl-mirror.nl/") 
 }			
-require(plyr)
+library(plyr)
 
 if (!("data.table" %in% rownames(installed.packages()))) {
-	install.packages("data.table", repos="http://cran.xl-mirror.nl/") 
+  install.packages("data.table", repos="http://cran.xl-mirror.nl/") 
 }
 library(data.table)
 
 if (!("reshape2" %in% rownames(installed.packages()))) {
-	install.packages("reshape2", repos="http://cran.xl-mirror.nl/") 
+  install.packages("reshape2", repos="http://cran.xl-mirror.nl/") 
 }
 library(reshape2)
 
+# ---------------------- parameters ----------------------
 
-test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="")
+args <- commandArgs(trailingOnly = TRUE)
 
-test = test[test$Sample != "",]
+infile = args[1] #path to input file
+outfile = args[2] #path to output file
+outdir = args[3] #path to output folder (html/images/data)
+clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering
+species = args[5] #human or mouse
+locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD
+filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no)
+
+# ---------------------- Data preperation ----------------------
+
+inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="")
 
-test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene)
-test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene)
-test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene)
+setwd(outdir)
+
+# remove weird rows
+inputdata = inputdata[inputdata$Sample != "",] 
 
-#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":"))
-test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":"))
-
-PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ]
-if("Functionality" %in% colnames(test)) {
-	PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ]
+#remove the allele from the V,D and J genes
+inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene)
+inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene)
+inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene)
+inputdata$clonaltype = 1:nrow(inputdata)
+PRODF = inputdata
+if(filterproductive){
+  if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column
+    PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ]
+  } else {
+    PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ]
+  }
 }
 
-NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ]
+#remove duplicates based on the clonaltype
+if(clonaltype != "none"){
+  PRODF$clonaltype = paste(PRODF[,unlist(strsplit(clonalType, ","))], sep=":")
+  PRODF = PRODF[!duplicated(PRODF$clonaltype), ]
+}
 
-#PRODF = PROD[ -1]
+PRODF$freq = 1
 
-PRODF = PROD
-
-#PRODF = unique(PRODF)
+if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*"
+  PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
+  PRODF$freq = gsub("_.*", "", PRODF$freq)
+  PRODF$freq = as.numeric(PRODF$freq)
+  if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence
+    PRODF$freq = 1
+  }
+}
 
 
 
-if(selection == "unique"){
-	PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ]
-}
+#write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive
+write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
 
-PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")])
-PRODFV$Length = as.numeric(PRODFV$Length)
-Total = 0
+#write the samples to a file
+sampleFile <- file("samples.txt")
+un = unique(inputdata$Sample)
+un = paste(un, sep="\n")
+writeLines(un, sampleFile)
+close(sampleFile)
+
+# ---------------------- Frequency calculation for V, D and J ----------------------
+
+PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
 
-PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")])
-PRODFD$Length = as.numeric(PRODFD$Length)
-Total = 0
+PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
 
-PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")])
-PRODFJ$Length = as.numeric(PRODFJ$Length)
-Total = 0
+PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
 
-V = c("v.name\tchr.orderV")
-D = c("v.name\tchr.orderD")
-J = c("v.name\tchr.orderJ")
+# ---------------------- Setting up the gene names for the different T/B, human/mouse and locus ----------------------
+
+V = c("v.name\tchr.orderV\n")
+D = c("v.name\tchr.orderD\n")  
+J = c("v.name\tchr.orderJ\n")
 
 if(species == "human"){
-	if(locus == "igh"){		
-		V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54")
-		D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18")
-		J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6")
-	} else if (locus == "igk"){
-		V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38")
-		D = c("v.name\tchr.orderD\n")
-		J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5")
-	} else if (locus == "igl"){
-		V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33")
-		D = c("v.name\tchr.orderD\n")
-		J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5")
-	}
+  if(locus == "trb"){		
+    V = c("v.name\tchr.orderV\nTRBV2\t1\nTRBV3-1\t2\nTRBV4-1\t3\nTRBV5-1\t4\nTRBV6-1\t5\nTRBV4-2\t6\nTRBV6-2\t7\nTRBV4-3\t8\nTRBV6-3\t9\nTRBV7-2\t10\nTRBV6-4\t11\nTRBV7-3\t12\nTRBV9\t13\nTRBV10-1\t14\nTRBV11-1\t15\nTRBV10-2\t16\nTRBV11-2\t17\nTRBV6-5\t18\nTRBV7-4\t19\nTRBV5-4\t20\nTRBV6-6\t21\nTRBV5-5\t22\nTRBV7-6\t23\nTRBV5-6\t24\nTRBV6-8\t25\nTRBV7-7\t26\nTRBV6-9\t27\nTRBV7-8\t28\nTRBV5-8\t29\nTRBV7-9\t30\nTRBV13\t31\nTRBV10-3\t32\nTRBV11-3\t33\nTRBV12-3\t34\nTRBV12-4\t35\nTRBV12-5\t36\nTRBV14\t37\nTRBV15\t38\nTRBV16\t39\nTRBV18\t40\nTRBV19\t41\nTRBV20-1\t42\nTRBV24-1\t43\nTRBV25-1\t44\nTRBV27\t45\nTRBV28\t46\nTRBV29-1\t47\nTRBV30\t48")
+    D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n")	
+    J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ1-6\t6\nTRBJ2-1\t7\nTRBJ2-2\t8\nTRBJ2-3\t9\nTRBJ2-4\t10\nTRBJ2-5\t11\nTRBJ2-6\t12\nTRBJ2-7\t13")
+  } else if (locus == "tra"){
+    V = c("v.name\tchr.orderVTRAV1-1\t1\nTRAV1-2\t2\nTRAV2\t3\nTRAV3\t4\nTRAV4\t5\nTRAV5\t6\nTRAV6\t7\nTRAV7\t8\nTRAV8-1\t9\nTRAV9-1\t10\nTRAV10\t11\nTRAV12-1\t12\nTRAV8-2\t13\nTRAV8-3\t14\nTRAV13-1\t15\nTRAV12-2\t16\nTRAV8-4\t17\nTRAV13-2\t18\nTRAV14/DV4\t19\nTRAV9-2\t20\nTRAV12-3\t21\nTRAV8-6\t22\nTRAV16\t23\nTRAV17\t24\nTRAV18\t25\nTRAV19\t26\nTRAV20\t27\nTRAV21\t28\nTRAV22\t29\nTRAV23/DV6\t30\nTRAV24\t31\nTRAV25\t32\nTRAV26-1\t33\nTRAV27\t34\nTRAV29/DV5\t35\nTRAV30\t36\nTRAV26-2\t37\nTRAV34\t38\nTRAV35\t39\nTRAV36/DV7\t40\nTRAV38-1\t41\nTRAV38-2/DV8\t42\nTRAV39\t43\nTRAV40\t44\nTRAV41\t45\n")
+    D = c("v.name\tchr.orderD\n")	
+    J = c("v.name\tchr.orderJ\nTRAJ57\t1\nTRAJ56\t2\nTRAJ54\t3\nTRAJ53\t4\nTRAJ52\t5\nTRAJ50\t6\nTRAJ49\t7\nTRAJ48\t8\nTRAJ47\t9\nTRAJ46\t10\nTRAJ45\t11\nTRAJ44\t12\nTRAJ43\t13\nTRAJ42\t14\nTRAJ41\t15\nTRAJ40\t16\nTRAJ39\t17\nTRAJ38\t18\nTRAJ37\t19\nTRAJ36\t20\nTRAJ34\t21\nTRAJ33\t22\nTRAJ32\t23\nTRAJ31\t24\nTRAJ30\t25\nTRAJ29\t26\nTRAJ28\t27\nTRAJ27\t28\nTRAJ26\t29\nTRAJ24\t30\nTRAJ23\t31\nTRAJ22\t32\nTRAJ21\t33\nTRAJ20\t34\nTRAJ18\t35\nTRAJ17\t36\nTRAJ16\t37\nTRAJ15\t38\nTRAJ14\t39\nTRAJ13\t40\nTRAJ12\t41\nTRAJ11\t42\nTRAJ10\t43\nTRAJ9\t44\nTRAJ8\t45\nTRAJ7\t46\nTRAJ6\t47\nTRAJ5\t48\nTRAJ4\t49\nTRAJ3\t50")
+  } else if (locus == "trg"){
+    V = c("v.name\tchr.orderV\nTRGV9\t1\nTRGV8\t2\nTRGV5\t3\nTRGV4\t4\nTRGV3\t5\nTRGV2\t6")
+    D = c("v.name\tchr.orderD\n")	
+    J = c("v.name\tchr.orderJ\nTRGJ2\t1\nTRGJP2\t2\nTRGJ1\t3\nTRGJP1\t4")
+  } else if (locus == "trd"){
+    V = c("v.name\tchr.orderV\nTRDV1\t1\nTRDV2\t2\nTRDV3\t3")
+    D = c("v.name\tchr.orderD\nTRDD1\t1\nTRDD2\t2\nTRDD3\t3")	
+    J = c("v.name\tchr.orderJ\nTRDJ1\t1\nTRDJ4\t2\nTRDJ2\t3\nTRDJ3\t4")
+  } else if(locus == "igh"){  	
+    V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54")
+    D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18")
+    J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6")
+  } else if (locus == "igk"){
+    V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38")
+    D = c("v.name\tchr.orderD\n")
+    J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5")
+  } else if (locus == "igl"){
+    V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33")
+    D = c("v.name\tchr.orderD\n")
+    J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5")
+  }
 } else if (species == "mouse"){
-	if(locus == "igh"){
-		cat("mouse igh not yet implemented")
-	} else if (locus == "igk"){
-		cat("mouse igk not yet implemented")
-	} else if (locus == "igl"){
-		cat("mouse igl not yet implemented")
-	}
+  if(locus == "trb"){		
+    V = c("v.name\tchr.orderV\nTRBV1\t1\nTRBV2\t2\nTRBV3\t3\nTRBV4\t4\nTRBV5\t5\nTRBV12-1\t6\nTRBV13-1\t7\nTRBV12-2\t8\nTRBV13-2\t9\nTRBV13-3\t10\nTRBV14\t11\nTRBV15\t12\nTRBV16\t13\nTRBV17\t14\nTRBV19\t15\nTRBV20\t16\nTRBV23\t17\nTRBV24\t18\nTRBV26\t19\nTRBV29\t20\nTRBV30\t21\nTRBV31\t22")
+    D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2")
+    J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ2-1\t6\nTRBJ2-2\t7\nTRBJ2-3\t8\nTRBJ2-4\t9\nTRBJ2-5\t10\nTRBJ2-6\t11\nTRBJ2-7\t12")
+  } else if (locus == "tra"){
+    cat("mouse tra not yet implemented")
+  } else if (locus == "trg"){
+    cat("mouse trg not yet implemented")
+  } else if (locus == "trd"){
+    cat("mouse trd not yet implemented")
+  } else if(locus == "igh"){
+    cat("mouse igh not yet implemented")
+  } else if (locus == "igk"){
+    cat("mouse igk not yet implemented")
+  } else if (locus == "igl"){
+    cat("mouse igl not yet implemented")
+  }
 }
 
 useD = TRUE
-if(species == "human" && (locus == "igk" || locus == "igl")){
-	useD = FALSE
+if(species == "human" && locus == "tra"){
+  useD = FALSE
+  cat("No D Genes in this species/locus")
 }
 
+# ---------------------- load the gene names into a data.frame and merge with the frequency count ----------------------
+
 tcV = textConnection(V)
 Vchain = read.table(tcV, sep="\t", header=TRUE)
 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
@@ -135,9 +183,7 @@
 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
 close(tcJ)
 
-setwd(outDir)
-
-write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
+# ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ----------------------
 
 pV = ggplot(PRODFV)
 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
@@ -148,13 +194,24 @@
 pV
 dev.off();
 
-pD = ggplot(PRODFD)
-pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
-write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+if(useD){
+  pD = ggplot(PRODFD)
+  pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
+  pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
+  write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+  
+  png("DPlot.png",width = 800, height = 600)
+  print(pD)
+  dev.off();
+}
 
-png("DPlot.png",width = 800, height = 600)
-pD
+pJ = ggplot(PRODFJ)
+pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
+pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
+write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+png("JPlot.png",width = 800, height = 600)
+pJ
 dev.off();
 
 pJ = ggplot(PRODFJ)
@@ -166,6 +223,8 @@
 pJ
 dev.off();
 
+# ---------------------- Now the frequency plots of the V, D and J families ----------------------
+
 VGenes = PRODF[,c("Sample", "Top.V.Gene")]
 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
@@ -174,27 +233,29 @@
 VGenes$Frequency = VGenes$Count * 100 / VGenes$total
 VPlot = ggplot(VGenes)
 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-				ggtitle("Distribution of V gene families") + 
-				ylab("Percentage of sequences")
+  ggtitle("Distribution of V gene families") + 
+  ylab("Percentage of sequences")
 png("VFPlot.png")
 VPlot
 dev.off();
 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
 
-DGenes = PRODF[,c("Sample", "Top.D.Gene")]
-DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
-DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
-TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
-DGenes = merge(DGenes, TotalPerSample, by="Sample")
-DGenes$Frequency = DGenes$Count * 100 / DGenes$total
-DPlot = ggplot(DGenes)
-DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-				ggtitle("Distribution of D gene families") + 
-				ylab("Percentage of sequences")
-png("DFPlot.png")
-DPlot
-dev.off();
-write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+if(useD){
+  DGenes = PRODF[,c("Sample", "Top.D.Gene")]
+  DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
+  DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
+  TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
+  DGenes = merge(DGenes, TotalPerSample, by="Sample")
+  DGenes$Frequency = DGenes$Count * 100 / DGenes$total
+  DPlot = ggplot(DGenes)
+  DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+    ggtitle("Distribution of D gene families") + 
+    ylab("Percentage of sequences")
+  png("DFPlot.png")
+  print(DPlot)
+  dev.off();
+  write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+}
 
 JGenes = PRODF[,c("Sample", "Top.J.Gene")]
 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene)
@@ -204,83 +265,91 @@
 JGenes$Frequency = JGenes$Count * 100 / JGenes$total
 JPlot = ggplot(JGenes)
 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-				ggtitle("Distribution of J gene families") + 
-				ylab("Percentage of sequences")
+  ggtitle("Distribution of J gene families") + 
+  ylab("Percentage of sequences")
 png("JFPlot.png")
 JPlot
 dev.off();
 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
 
+# ---------------------- Plotting the cdr3 length ----------------------
+
 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")])
 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
 CDR3LengthPlot = ggplot(CDR3Length)
 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-				ggtitle("Length distribution of CDR3") + 
-				xlab("CDR3 Length") + 
-				ylab("Percentage of sequences")
+  ggtitle("Length distribution of CDR3") + 
+  xlab("CDR3 Length") + 
+  ylab("Percentage of sequences")
 png("CDR3LengthPlot.png",width = 1280, height = 720)
 CDR3LengthPlot
 dev.off()
 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
 
+# ---------------------- Plot the heatmaps ----------------------
+
+
+#get the reverse order for the V and D genes
 revVchain = Vchain
 revDchain = Dchain
 revVchain$chr.orderV = rev(revVchain$chr.orderV)
 revDchain$chr.orderD = rev(revDchain$chr.orderD)
 
-plotVD <- function(dat){
-	if(length(dat[,1]) == 0){
-		return()
-	}
-	img = ggplot() + 
-	geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-	theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-	scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-	ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-	xlab("D genes") + 
-	ylab("V Genes")
-	
-	png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
-	print(img)
-	
-	dev.off()
-	write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+if(useD){
+  plotVD <- function(dat){
+    if(length(dat[,1]) == 0){
+      return()
+    }
+    img = ggplot() + 
+      geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
+      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+      xlab("D genes") + 
+      ylab("V Genes")
+    
+    png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
+    print(img)
+    dev.off()
+    write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+  }
+  
+  VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
+  
+  VandDCount$l = log(VandDCount$Length)
+  maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
+  VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
+  VandDCount$relLength = VandDCount$l / VandDCount$max
+  
+  cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(inputdata$Sample))
+  
+  completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
+  completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
+  completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
+  VDList = split(completeVD, f=completeVD[,"Sample"])
+  
+  lapply(VDList, FUN=plotVD)
 }
 
-VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
-
-VandDCount$l = log(VandDCount$Length)
-maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
-VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
-VandDCount$relLength = VandDCount$l / VandDCount$max
-
-cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample))
-
-completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
-completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-VDList = split(completeVD, f=completeVD[,"Sample"])
-
-lapply(VDList, FUN=plotVD)
-
 plotVJ <- function(dat){
-	if(length(dat[,1]) == 0){
-		return()
-	}
-	img = ggplot() + 
-	geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
-	theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-	scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-	ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-	xlab("J genes") + 
-	ylab("V Genes")
-	
-	png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
-	print(img)
-	dev.off()
-	write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+  if(length(dat[,1]) == 0){
+    return()
+  }
+  cat(paste(unique(dat[3])[1,1]))
+  img = ggplot() + 
+    geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
+    theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+    scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+    ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+    xlab("J genes") + 
+    ylab("V Genes")
+  
+  png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
+  print(img)
+  dev.off()
+  write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
 }
 
 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
@@ -290,7 +359,7 @@
 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
 VandJCount$relLength = VandJCount$l / VandJCount$max
 
-cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
+cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
 
 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
@@ -298,157 +367,158 @@
 VJList = split(completeVJ, f=completeVJ[,"Sample"])
 lapply(VJList, FUN=plotVJ)
 
-plotDJ <- function(dat){
-	if(length(dat[,1]) == 0){
-		return()
-	}
-	img = ggplot() + 
-	geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + 
-	theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
-	scale_fill_gradient(low="gold", high="blue", na.value="white") + 
-	ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
-	xlab("J genes") + 
-	ylab("D Genes")
-	
-	png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
-	print(img)
-	dev.off()
-	write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+if(useD){
+  plotDJ <- function(dat){
+    if(length(dat[,1]) == 0){
+      return()
+    }
+    img = ggplot() + 
+      geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + 
+      theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+      scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+      ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+      xlab("J genes") + 
+      ylab("D Genes")
+    
+    png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
+    print(img)
+    dev.off()
+    write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+  }
+  
+  
+  DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
+  
+  DandJCount$l = log(DandJCount$Length)
+  maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
+  DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
+  DandJCount$relLength = DandJCount$l / DandJCount$max
+  
+  cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
+  
+  completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
+  completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
+  completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
+  DJList = split(completeDJ, f=completeDJ[,"Sample"])
+  lapply(DJList, FUN=plotDJ)
 }
 
 
-DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
-
-DandJCount$l = log(DandJCount$Length)
-maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
-DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
-DandJCount$relLength = DandJCount$l / DandJCount$max
-
-cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
-
-completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
-completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-DJList = split(completeDJ, f=completeDJ[,"Sample"])
-lapply(DJList, FUN=plotDJ)
-
-sampleFile <- file("samples.txt")
-un = unique(test$Sample)
-un = paste(un, sep="\n")
-writeLines(un, sampleFile)
-close(sampleFile)
-
-
-if("Replicate" %in% colnames(test))
-{
-	clonalityFrame = PROD
-	clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":"))
-	clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ]
-	write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-	ClonalitySampleReplicatePrint <- function(dat){
-	    write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
-	}
-
-    clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")])
-    #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint)
-
-    ClonalitySamplePrint <- function(dat){
-	    write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
-	}
-
-    clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"])
-    #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint)
-
-	clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")])
-	clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
-	clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
-	clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
-	clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
+# ---------------------- calculating the clonality score ----------------------
 
-	ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
-	tcct = textConnection(ct)
-	CT  = read.table(tcct, sep="\t", header=TRUE)
-	close(tcct)
-	clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
-	clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
-
-	ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")])
-	ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
-	clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
-	ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
-
-	ReplicatePrint <- function(dat){
-		write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-	}
-
-	ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-	lapply(ReplicateSplit, FUN=ReplicatePrint)
-
-	ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")])
-	clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
-
-
-	ReplicateSumPrint <- function(dat){
-		write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-	}
-
-	ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
-	lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
-
-	clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
-	clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
-	clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
-	clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
-	clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
-
-	ClonalityScorePrint <- function(dat){
-		write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-	}
-
-	clonalityScore = clonalFreqCount[c("Sample", "Result")]
-	clonalityScore = unique(clonalityScore)
-
-	clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
-	lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
-
-	clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
-
-
-
-	ClonalityOverviewPrint <- function(dat){
-		write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
-	}
-
-	clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
-	lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
+if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available
+{
+  clonalityFrame = inputdata
+  if(clonaltype != "none"){
+    clonalityFrame$ReplicateConcat = paste(clonalityFrame$clonaltype, clonalityFrame$Sample, clonalityFrame$Replicate, sep = ":")
+    clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ]
+  }
+  write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
+  
+  ClonalitySampleReplicatePrint <- function(dat){
+    write.table(dat, paste("clonality_", unique(inputdata$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
+  }
+  
+  clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")])
+  #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint)
+  
+  ClonalitySamplePrint <- function(dat){
+    write.table(dat, paste("clonality_", unique(inputdata$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
+  }
+  
+  clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"])
+  #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint)
+  
+  clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")])
+  clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
+  clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
+  clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
+  clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
+  
+  ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
+  tcct = textConnection(ct)
+  CT  = read.table(tcct, sep="\t", header=TRUE)
+  close(tcct)
+  clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
+  clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
+  
+  ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")])
+  ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
+  clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
+  ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
+  
+  ReplicatePrint <- function(dat){
+    write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+  }
+  
+  ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
+  lapply(ReplicateSplit, FUN=ReplicatePrint)
+  
+  ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")])
+  clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
+  
+  
+  ReplicateSumPrint <- function(dat){
+    write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+  }
+  
+  ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
+  lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
+  
+  clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
+  clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
+  clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
+  clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
+  clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
+  
+  ClonalityScorePrint <- function(dat){
+    write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+  }
+  
+  clonalityScore = clonalFreqCount[c("Sample", "Result")]
+  clonalityScore = unique(clonalityScore)
+  
+  clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
+  lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
+  
+  clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
+  
+  
+  
+  ClonalityOverviewPrint <- function(dat){
+    write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+  }
+  
+  clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
+  lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
 }
 
-if("Functionality" %in% colnames(test))
+imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb")
+if(all(imgtcolumns %in% colnames(inputdata)))
 {
-	newData = data.frame(data.table(PROD)[,list(unique=.N, 
-				VH.DEL=mean(X3V.REGION.trimmed.nt.nb),
-				P1=mean(P3V.nt.nb),
-				N1=mean(N1.REGION.nt.nb),
-				P2=mean(P5D.nt.nb),
-				DEL.DH=mean(X5D.REGION.trimmed.nt.nb),
-				DH.DEL=mean(X3D.REGION.trimmed.nt.nb),
-				P3=mean(P3D.nt.nb),
-				N2=mean(N2.REGION.nt.nb),
-				P4=mean(P5J.nt.nb),
-				DEL.JH=mean(X5J.REGION.trimmed.nt.nb),
-				Total.Del=(	mean(X3V.REGION.trimmed.nt.nb) + 
-							mean(X5D.REGION.trimmed.nt.nb) + 
-							mean(X3D.REGION.trimmed.nt.nb) +
-							mean(X5J.REGION.trimmed.nt.nb)),
-							
-				Total.N=(	mean(N1.REGION.nt.nb) +
-							mean(N2.REGION.nt.nb)),
-							
-				Total.P=(	mean(P3V.nt.nb) +
-							mean(P5D.nt.nb) +
-							mean(P3D.nt.nb) +
-							mean(P5J.nt.nb))),
-				by=c("Sample")])
-	write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
+  newData = data.frame(data.table(inputdata)[,list(unique=.N, 
+                                              VH.DEL=mean(X3V.REGION.trimmed.nt.nb, na.rm=T),
+                                              P1=mean(P3V.nt.nb, na.rm=T),
+                                              N1=mean(N1.REGION.nt.nb, na.rm=T),
+                                              P2=mean(P5D.nt.nb, na.rm=T),
+                                              DEL.DH=mean(X5D.REGION.trimmed.nt.nb, na.rm=T),
+                                              DH.DEL=mean(X3D.REGION.trimmed.nt.nb, na.rm=T),
+                                              P3=mean(P3D.nt.nb, na.rm=T),
+                                              N2=mean(N2.REGION.nt.nb, na.rm=T),
+                                              P4=mean(P5J.nt.nb, na.rm=T),
+                                              DEL.JH=mean(X5J.REGION.trimmed.nt.nb, na.rm=T),
+                                              Total.Del=(	mean(X3V.REGION.trimmed.nt.nb, na.rm=T) + 
+                                                            mean(X5D.REGION.trimmed.nt.nb, na.rm=T) + 
+                                                            mean(X3D.REGION.trimmed.nt.nb, na.rm=T) +
+                                                            mean(X5J.REGION.trimmed.nt.nb, na.rm=T)),
+                                              
+                                              Total.N=(	mean(N1.REGION.nt.nb, na.rm=T) +
+                                                          mean(N2.REGION.nt.nb, na.rm=T)),
+                                              
+                                              Total.P=(	mean(P3V.nt.nb, na.rm=T) +
+                                                          mean(P5D.nt.nb, na.rm=T) +
+                                                          mean(P3D.nt.nb, na.rm=T) +
+                                                          mean(P5J.nt.nb, na.rm=T))),
+                                        by=c("Sample")])
+  write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
 }