Mercurial > repos > davidvanzessen > report_clonality_igg
comparison RScript.r @ 11:866d22e60e60 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 13 Nov 2014 10:33:04 -0500 |
parents | 06777331fbd8 |
children | 50260274967c |
comparison
equal
deleted
inserted
replaced
10:06777331fbd8 | 11:866d22e60e60 |
---|---|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 1 # ---------------------- load/install packages ---------------------- |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 clonalType = args[4] | |
9 species = args[5] | |
10 locus = args[6] | |
11 selection = args[7] | |
12 | |
13 | |
14 | 2 |
15 if (!("gridExtra" %in% rownames(installed.packages()))) { | 3 if (!("gridExtra" %in% rownames(installed.packages()))) { |
16 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | 4 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") |
17 } | 5 } |
18 library(gridExtra) | 6 library(gridExtra) |
19 if (!("ggplot2" %in% rownames(installed.packages()))) { | 7 if (!("ggplot2" %in% rownames(installed.packages()))) { |
20 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | 8 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") |
21 } | 9 } |
22 require(ggplot2) | 10 library(ggplot2) |
23 if (!("plyr" %in% rownames(installed.packages()))) { | 11 if (!("plyr" %in% rownames(installed.packages()))) { |
24 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | 12 install.packages("plyr", repos="http://cran.xl-mirror.nl/") |
25 } | 13 } |
26 require(plyr) | 14 library(plyr) |
27 | 15 |
28 if (!("data.table" %in% rownames(installed.packages()))) { | 16 if (!("data.table" %in% rownames(installed.packages()))) { |
29 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | 17 install.packages("data.table", repos="http://cran.xl-mirror.nl/") |
30 } | 18 } |
31 library(data.table) | 19 library(data.table) |
32 | 20 |
33 if (!("reshape2" %in% rownames(installed.packages()))) { | 21 if (!("reshape2" %in% rownames(installed.packages()))) { |
34 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | 22 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") |
35 } | 23 } |
36 library(reshape2) | 24 library(reshape2) |
37 | 25 |
38 | 26 # ---------------------- parameters ---------------------- |
39 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") | 27 |
40 | 28 args <- commandArgs(trailingOnly = TRUE) |
41 test = test[test$Sample != "",] | 29 |
42 | 30 infile = args[1] #path to input file |
43 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | 31 outfile = args[2] #path to output file |
44 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | 32 outdir = args[3] #path to output folder (html/images/data) |
45 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | 33 clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering |
46 | 34 species = args[5] #human or mouse |
47 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | 35 locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD |
48 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) | 36 filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no) |
49 | 37 |
50 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | 38 # ---------------------- Data preperation ---------------------- |
51 if("Functionality" %in% colnames(test)) { | 39 |
52 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] | 40 inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="") |
53 } | 41 |
54 | 42 setwd(outdir) |
55 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | 43 |
56 | 44 # remove weird rows |
57 #PRODF = PROD[ -1] | 45 inputdata = inputdata[inputdata$Sample != "",] |
58 | 46 |
59 PRODF = PROD | 47 #remove the allele from the V,D and J genes |
60 | 48 inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene) |
61 #PRODF = unique(PRODF) | 49 inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene) |
62 | 50 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) |
63 | 51 inputdata$clonaltype = 1:nrow(inputdata) |
64 | 52 PRODF = inputdata |
65 if(selection == "unique"){ | 53 if(filterproductive){ |
66 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | 54 if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column |
67 } | 55 PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ] |
68 | 56 } else { |
69 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | 57 PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ] |
70 PRODFV$Length = as.numeric(PRODFV$Length) | 58 } |
71 Total = 0 | 59 } |
60 | |
61 #remove duplicates based on the clonaltype | |
62 if(clonaltype != "none"){ | |
63 PRODF$clonaltype = paste(PRODF[,unlist(strsplit(clonalType, ","))], sep=":") | |
64 PRODF = PRODF[!duplicated(PRODF$clonaltype), ] | |
65 } | |
66 | |
67 PRODF$freq = 1 | |
68 | |
69 if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*" | |
70 PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID) | |
71 PRODF$freq = gsub("_.*", "", PRODF$freq) | |
72 PRODF$freq = as.numeric(PRODF$freq) | |
73 if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence | |
74 PRODF$freq = 1 | |
75 } | |
76 } | |
77 | |
78 | |
79 | |
80 #write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive | |
81 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
82 | |
83 #write the samples to a file | |
84 sampleFile <- file("samples.txt") | |
85 un = unique(inputdata$Sample) | |
86 un = paste(un, sep="\n") | |
87 writeLines(un, sampleFile) | |
88 close(sampleFile) | |
89 | |
90 # ---------------------- Frequency calculation for V, D and J ---------------------- | |
91 | |
92 PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")]) | |
72 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | 93 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) |
73 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | 94 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) |
74 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | 95 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) |
75 | 96 |
76 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | 97 PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")]) |
77 PRODFD$Length = as.numeric(PRODFD$Length) | |
78 Total = 0 | |
79 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | 98 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) |
80 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | 99 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) |
81 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | 100 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) |
82 | 101 |
83 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | 102 PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")]) |
84 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
85 Total = 0 | |
86 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | 103 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) |
87 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | 104 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) |
88 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | 105 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) |
89 | 106 |
90 V = c("v.name\tchr.orderV") | 107 # ---------------------- Setting up the gene names for the different T/B, human/mouse and locus ---------------------- |
91 D = c("v.name\tchr.orderD") | 108 |
92 J = c("v.name\tchr.orderJ") | 109 V = c("v.name\tchr.orderV\n") |
110 D = c("v.name\tchr.orderD\n") | |
111 J = c("v.name\tchr.orderJ\n") | |
93 | 112 |
94 if(species == "human"){ | 113 if(species == "human"){ |
95 if(locus == "igh"){ | 114 if(locus == "trb"){ |
96 V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54") | 115 V = c("v.name\tchr.orderV\nTRBV2\t1\nTRBV3-1\t2\nTRBV4-1\t3\nTRBV5-1\t4\nTRBV6-1\t5\nTRBV4-2\t6\nTRBV6-2\t7\nTRBV4-3\t8\nTRBV6-3\t9\nTRBV7-2\t10\nTRBV6-4\t11\nTRBV7-3\t12\nTRBV9\t13\nTRBV10-1\t14\nTRBV11-1\t15\nTRBV10-2\t16\nTRBV11-2\t17\nTRBV6-5\t18\nTRBV7-4\t19\nTRBV5-4\t20\nTRBV6-6\t21\nTRBV5-5\t22\nTRBV7-6\t23\nTRBV5-6\t24\nTRBV6-8\t25\nTRBV7-7\t26\nTRBV6-9\t27\nTRBV7-8\t28\nTRBV5-8\t29\nTRBV7-9\t30\nTRBV13\t31\nTRBV10-3\t32\nTRBV11-3\t33\nTRBV12-3\t34\nTRBV12-4\t35\nTRBV12-5\t36\nTRBV14\t37\nTRBV15\t38\nTRBV16\t39\nTRBV18\t40\nTRBV19\t41\nTRBV20-1\t42\nTRBV24-1\t43\nTRBV25-1\t44\nTRBV27\t45\nTRBV28\t46\nTRBV29-1\t47\nTRBV30\t48") |
97 D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18") | 116 D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n") |
98 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | 117 J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ1-6\t6\nTRBJ2-1\t7\nTRBJ2-2\t8\nTRBJ2-3\t9\nTRBJ2-4\t10\nTRBJ2-5\t11\nTRBJ2-6\t12\nTRBJ2-7\t13") |
99 } else if (locus == "igk"){ | 118 } else if (locus == "tra"){ |
100 V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38") | 119 V = c("v.name\tchr.orderVTRAV1-1\t1\nTRAV1-2\t2\nTRAV2\t3\nTRAV3\t4\nTRAV4\t5\nTRAV5\t6\nTRAV6\t7\nTRAV7\t8\nTRAV8-1\t9\nTRAV9-1\t10\nTRAV10\t11\nTRAV12-1\t12\nTRAV8-2\t13\nTRAV8-3\t14\nTRAV13-1\t15\nTRAV12-2\t16\nTRAV8-4\t17\nTRAV13-2\t18\nTRAV14/DV4\t19\nTRAV9-2\t20\nTRAV12-3\t21\nTRAV8-6\t22\nTRAV16\t23\nTRAV17\t24\nTRAV18\t25\nTRAV19\t26\nTRAV20\t27\nTRAV21\t28\nTRAV22\t29\nTRAV23/DV6\t30\nTRAV24\t31\nTRAV25\t32\nTRAV26-1\t33\nTRAV27\t34\nTRAV29/DV5\t35\nTRAV30\t36\nTRAV26-2\t37\nTRAV34\t38\nTRAV35\t39\nTRAV36/DV7\t40\nTRAV38-1\t41\nTRAV38-2/DV8\t42\nTRAV39\t43\nTRAV40\t44\nTRAV41\t45\n") |
101 D = c("v.name\tchr.orderD\n") | 120 D = c("v.name\tchr.orderD\n") |
102 J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5") | 121 J = c("v.name\tchr.orderJ\nTRAJ57\t1\nTRAJ56\t2\nTRAJ54\t3\nTRAJ53\t4\nTRAJ52\t5\nTRAJ50\t6\nTRAJ49\t7\nTRAJ48\t8\nTRAJ47\t9\nTRAJ46\t10\nTRAJ45\t11\nTRAJ44\t12\nTRAJ43\t13\nTRAJ42\t14\nTRAJ41\t15\nTRAJ40\t16\nTRAJ39\t17\nTRAJ38\t18\nTRAJ37\t19\nTRAJ36\t20\nTRAJ34\t21\nTRAJ33\t22\nTRAJ32\t23\nTRAJ31\t24\nTRAJ30\t25\nTRAJ29\t26\nTRAJ28\t27\nTRAJ27\t28\nTRAJ26\t29\nTRAJ24\t30\nTRAJ23\t31\nTRAJ22\t32\nTRAJ21\t33\nTRAJ20\t34\nTRAJ18\t35\nTRAJ17\t36\nTRAJ16\t37\nTRAJ15\t38\nTRAJ14\t39\nTRAJ13\t40\nTRAJ12\t41\nTRAJ11\t42\nTRAJ10\t43\nTRAJ9\t44\nTRAJ8\t45\nTRAJ7\t46\nTRAJ6\t47\nTRAJ5\t48\nTRAJ4\t49\nTRAJ3\t50") |
103 } else if (locus == "igl"){ | 122 } else if (locus == "trg"){ |
104 V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33") | 123 V = c("v.name\tchr.orderV\nTRGV9\t1\nTRGV8\t2\nTRGV5\t3\nTRGV4\t4\nTRGV3\t5\nTRGV2\t6") |
105 D = c("v.name\tchr.orderD\n") | 124 D = c("v.name\tchr.orderD\n") |
106 J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5") | 125 J = c("v.name\tchr.orderJ\nTRGJ2\t1\nTRGJP2\t2\nTRGJ1\t3\nTRGJP1\t4") |
107 } | 126 } else if (locus == "trd"){ |
127 V = c("v.name\tchr.orderV\nTRDV1\t1\nTRDV2\t2\nTRDV3\t3") | |
128 D = c("v.name\tchr.orderD\nTRDD1\t1\nTRDD2\t2\nTRDD3\t3") | |
129 J = c("v.name\tchr.orderJ\nTRDJ1\t1\nTRDJ4\t2\nTRDJ2\t3\nTRDJ3\t4") | |
130 } else if(locus == "igh"){ | |
131 V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54") | |
132 D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18") | |
133 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | |
134 } else if (locus == "igk"){ | |
135 V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38") | |
136 D = c("v.name\tchr.orderD\n") | |
137 J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5") | |
138 } else if (locus == "igl"){ | |
139 V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33") | |
140 D = c("v.name\tchr.orderD\n") | |
141 J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5") | |
142 } | |
108 } else if (species == "mouse"){ | 143 } else if (species == "mouse"){ |
109 if(locus == "igh"){ | 144 if(locus == "trb"){ |
110 cat("mouse igh not yet implemented") | 145 V = c("v.name\tchr.orderV\nTRBV1\t1\nTRBV2\t2\nTRBV3\t3\nTRBV4\t4\nTRBV5\t5\nTRBV12-1\t6\nTRBV13-1\t7\nTRBV12-2\t8\nTRBV13-2\t9\nTRBV13-3\t10\nTRBV14\t11\nTRBV15\t12\nTRBV16\t13\nTRBV17\t14\nTRBV19\t15\nTRBV20\t16\nTRBV23\t17\nTRBV24\t18\nTRBV26\t19\nTRBV29\t20\nTRBV30\t21\nTRBV31\t22") |
111 } else if (locus == "igk"){ | 146 D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2") |
112 cat("mouse igk not yet implemented") | 147 J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ2-1\t6\nTRBJ2-2\t7\nTRBJ2-3\t8\nTRBJ2-4\t9\nTRBJ2-5\t10\nTRBJ2-6\t11\nTRBJ2-7\t12") |
113 } else if (locus == "igl"){ | 148 } else if (locus == "tra"){ |
114 cat("mouse igl not yet implemented") | 149 cat("mouse tra not yet implemented") |
115 } | 150 } else if (locus == "trg"){ |
151 cat("mouse trg not yet implemented") | |
152 } else if (locus == "trd"){ | |
153 cat("mouse trd not yet implemented") | |
154 } else if(locus == "igh"){ | |
155 cat("mouse igh not yet implemented") | |
156 } else if (locus == "igk"){ | |
157 cat("mouse igk not yet implemented") | |
158 } else if (locus == "igl"){ | |
159 cat("mouse igl not yet implemented") | |
160 } | |
116 } | 161 } |
117 | 162 |
118 useD = TRUE | 163 useD = TRUE |
119 if(species == "human" && (locus == "igk" || locus == "igl")){ | 164 if(species == "human" && locus == "tra"){ |
120 useD = FALSE | 165 useD = FALSE |
121 } | 166 cat("No D Genes in this species/locus") |
167 } | |
168 | |
169 # ---------------------- load the gene names into a data.frame and merge with the frequency count ---------------------- | |
122 | 170 |
123 tcV = textConnection(V) | 171 tcV = textConnection(V) |
124 Vchain = read.table(tcV, sep="\t", header=TRUE) | 172 Vchain = read.table(tcV, sep="\t", header=TRUE) |
125 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | 173 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) |
126 close(tcV) | 174 close(tcV) |
133 tcJ = textConnection(J) | 181 tcJ = textConnection(J) |
134 Jchain = read.table(tcJ, sep="\t", header=TRUE) | 182 Jchain = read.table(tcJ, sep="\t", header=TRUE) |
135 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | 183 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) |
136 close(tcJ) | 184 close(tcJ) |
137 | 185 |
138 setwd(outDir) | 186 # ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ---------------------- |
139 | |
140 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
141 | 187 |
142 pV = ggplot(PRODFV) | 188 pV = ggplot(PRODFV) |
143 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | 189 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) |
144 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | 190 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") |
145 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 191 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) |
146 | 192 |
147 png("VPlot.png",width = 1280, height = 720) | 193 png("VPlot.png",width = 1280, height = 720) |
148 pV | 194 pV |
149 dev.off(); | 195 dev.off(); |
150 | 196 |
151 pD = ggplot(PRODFD) | 197 if(useD){ |
152 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | 198 pD = ggplot(PRODFD) |
153 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | 199 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) |
154 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 200 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") |
155 | 201 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) |
156 png("DPlot.png",width = 800, height = 600) | 202 |
157 pD | 203 png("DPlot.png",width = 800, height = 600) |
158 dev.off(); | 204 print(pD) |
205 dev.off(); | |
206 } | |
159 | 207 |
160 pJ = ggplot(PRODFJ) | 208 pJ = ggplot(PRODFJ) |
161 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | 209 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) |
162 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | 210 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") |
163 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 211 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) |
164 | 212 |
165 png("JPlot.png",width = 800, height = 600) | 213 png("JPlot.png",width = 800, height = 600) |
166 pJ | 214 pJ |
167 dev.off(); | 215 dev.off(); |
216 | |
217 pJ = ggplot(PRODFJ) | |
218 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
219 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
220 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
221 | |
222 png("JPlot.png",width = 800, height = 600) | |
223 pJ | |
224 dev.off(); | |
225 | |
226 # ---------------------- Now the frequency plots of the V, D and J families ---------------------- | |
168 | 227 |
169 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | 228 VGenes = PRODF[,c("Sample", "Top.V.Gene")] |
170 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | 229 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) |
171 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | 230 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) |
172 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | 231 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) |
173 VGenes = merge(VGenes, TotalPerSample, by="Sample") | 232 VGenes = merge(VGenes, TotalPerSample, by="Sample") |
174 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | 233 VGenes$Frequency = VGenes$Count * 100 / VGenes$total |
175 VPlot = ggplot(VGenes) | 234 VPlot = ggplot(VGenes) |
176 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 235 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
177 ggtitle("Distribution of V gene families") + | 236 ggtitle("Distribution of V gene families") + |
178 ylab("Percentage of sequences") | 237 ylab("Percentage of sequences") |
179 png("VFPlot.png") | 238 png("VFPlot.png") |
180 VPlot | 239 VPlot |
181 dev.off(); | 240 dev.off(); |
182 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 241 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) |
183 | 242 |
184 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | 243 if(useD){ |
185 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | 244 DGenes = PRODF[,c("Sample", "Top.D.Gene")] |
186 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | 245 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) |
187 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | 246 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) |
188 DGenes = merge(DGenes, TotalPerSample, by="Sample") | 247 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) |
189 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | 248 DGenes = merge(DGenes, TotalPerSample, by="Sample") |
190 DPlot = ggplot(DGenes) | 249 DGenes$Frequency = DGenes$Count * 100 / DGenes$total |
191 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 250 DPlot = ggplot(DGenes) |
192 ggtitle("Distribution of D gene families") + | 251 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
193 ylab("Percentage of sequences") | 252 ggtitle("Distribution of D gene families") + |
194 png("DFPlot.png") | 253 ylab("Percentage of sequences") |
195 DPlot | 254 png("DFPlot.png") |
196 dev.off(); | 255 print(DPlot) |
197 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 256 dev.off(); |
257 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
258 } | |
198 | 259 |
199 JGenes = PRODF[,c("Sample", "Top.J.Gene")] | 260 JGenes = PRODF[,c("Sample", "Top.J.Gene")] |
200 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) | 261 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) |
201 JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) | 262 JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) |
202 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) | 263 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) |
203 JGenes = merge(JGenes, TotalPerSample, by="Sample") | 264 JGenes = merge(JGenes, TotalPerSample, by="Sample") |
204 JGenes$Frequency = JGenes$Count * 100 / JGenes$total | 265 JGenes$Frequency = JGenes$Count * 100 / JGenes$total |
205 JPlot = ggplot(JGenes) | 266 JPlot = ggplot(JGenes) |
206 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 267 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
207 ggtitle("Distribution of J gene families") + | 268 ggtitle("Distribution of J gene families") + |
208 ylab("Percentage of sequences") | 269 ylab("Percentage of sequences") |
209 png("JFPlot.png") | 270 png("JFPlot.png") |
210 JPlot | 271 JPlot |
211 dev.off(); | 272 dev.off(); |
212 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | 273 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) |
274 | |
275 # ---------------------- Plotting the cdr3 length ---------------------- | |
213 | 276 |
214 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) | 277 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) |
215 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | 278 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) |
216 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | 279 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") |
217 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | 280 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total |
218 CDR3LengthPlot = ggplot(CDR3Length) | 281 CDR3LengthPlot = ggplot(CDR3Length) |
219 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 282 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
220 ggtitle("Length distribution of CDR3") + | 283 ggtitle("Length distribution of CDR3") + |
221 xlab("CDR3 Length") + | 284 xlab("CDR3 Length") + |
222 ylab("Percentage of sequences") | 285 ylab("Percentage of sequences") |
223 png("CDR3LengthPlot.png",width = 1280, height = 720) | 286 png("CDR3LengthPlot.png",width = 1280, height = 720) |
224 CDR3LengthPlot | 287 CDR3LengthPlot |
225 dev.off() | 288 dev.off() |
226 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | 289 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) |
227 | 290 |
291 # ---------------------- Plot the heatmaps ---------------------- | |
292 | |
293 | |
294 #get the reverse order for the V and D genes | |
228 revVchain = Vchain | 295 revVchain = Vchain |
229 revDchain = Dchain | 296 revDchain = Dchain |
230 revVchain$chr.orderV = rev(revVchain$chr.orderV) | 297 revVchain$chr.orderV = rev(revVchain$chr.orderV) |
231 revDchain$chr.orderD = rev(revDchain$chr.orderD) | 298 revDchain$chr.orderD = rev(revDchain$chr.orderD) |
232 | 299 |
233 plotVD <- function(dat){ | 300 if(useD){ |
234 if(length(dat[,1]) == 0){ | 301 plotVD <- function(dat){ |
235 return() | 302 if(length(dat[,1]) == 0){ |
236 } | 303 return() |
237 img = ggplot() + | 304 } |
238 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 305 img = ggplot() + |
239 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 306 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
240 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 307 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
241 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 308 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
242 xlab("D genes") + | 309 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
243 ylab("V Genes") | 310 xlab("D genes") + |
244 | 311 ylab("V Genes") |
245 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | 312 |
246 print(img) | 313 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) |
247 | 314 print(img) |
248 dev.off() | 315 dev.off() |
249 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 316 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) |
250 } | 317 } |
251 | 318 |
252 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | 319 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) |
253 | 320 |
254 VandDCount$l = log(VandDCount$Length) | 321 VandDCount$l = log(VandDCount$Length) |
255 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | 322 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) |
256 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | 323 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) |
257 VandDCount$relLength = VandDCount$l / VandDCount$max | 324 VandDCount$relLength = VandDCount$l / VandDCount$max |
258 | 325 |
259 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | 326 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(inputdata$Sample)) |
260 | 327 |
261 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | 328 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) |
262 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | 329 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) |
263 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | 330 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) |
264 VDList = split(completeVD, f=completeVD[,"Sample"]) | 331 VDList = split(completeVD, f=completeVD[,"Sample"]) |
265 | 332 |
266 lapply(VDList, FUN=plotVD) | 333 lapply(VDList, FUN=plotVD) |
334 } | |
267 | 335 |
268 plotVJ <- function(dat){ | 336 plotVJ <- function(dat){ |
269 if(length(dat[,1]) == 0){ | 337 if(length(dat[,1]) == 0){ |
270 return() | 338 return() |
271 } | 339 } |
272 img = ggplot() + | 340 cat(paste(unique(dat[3])[1,1])) |
273 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 341 img = ggplot() + |
274 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 342 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
275 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 343 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
276 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 344 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
277 xlab("J genes") + | 345 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
278 ylab("V Genes") | 346 xlab("J genes") + |
279 | 347 ylab("V Genes") |
280 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | 348 |
281 print(img) | 349 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) |
282 dev.off() | 350 print(img) |
283 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 351 dev.off() |
352 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
284 } | 353 } |
285 | 354 |
286 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | 355 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) |
287 | 356 |
288 VandJCount$l = log(VandJCount$Length) | 357 VandJCount$l = log(VandJCount$Length) |
289 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | 358 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) |
290 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | 359 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) |
291 VandJCount$relLength = VandJCount$l / VandJCount$max | 360 VandJCount$relLength = VandJCount$l / VandJCount$max |
292 | 361 |
293 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | 362 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample)) |
294 | 363 |
295 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | 364 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) |
296 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | 365 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) |
297 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | 366 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) |
298 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | 367 VJList = split(completeVJ, f=completeVJ[,"Sample"]) |
299 lapply(VJList, FUN=plotVJ) | 368 lapply(VJList, FUN=plotVJ) |
300 | 369 |
301 plotDJ <- function(dat){ | 370 if(useD){ |
302 if(length(dat[,1]) == 0){ | 371 plotDJ <- function(dat){ |
303 return() | 372 if(length(dat[,1]) == 0){ |
304 } | 373 return() |
305 img = ggplot() + | 374 } |
306 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | 375 img = ggplot() + |
307 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 376 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + |
308 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 377 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
309 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 378 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
310 xlab("J genes") + | 379 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
311 ylab("D Genes") | 380 xlab("J genes") + |
312 | 381 ylab("D Genes") |
313 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | 382 |
314 print(img) | 383 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) |
315 dev.off() | 384 print(img) |
316 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 385 dev.off() |
317 } | 386 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) |
318 | 387 } |
319 | 388 |
320 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | 389 |
321 | 390 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) |
322 DandJCount$l = log(DandJCount$Length) | 391 |
323 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | 392 DandJCount$l = log(DandJCount$Length) |
324 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | 393 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) |
325 DandJCount$relLength = DandJCount$l / DandJCount$max | 394 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) |
326 | 395 DandJCount$relLength = DandJCount$l / DandJCount$max |
327 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | 396 |
328 | 397 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample)) |
329 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | 398 |
330 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | 399 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) |
331 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | 400 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) |
332 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | 401 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) |
333 lapply(DJList, FUN=plotDJ) | 402 DJList = split(completeDJ, f=completeDJ[,"Sample"]) |
334 | 403 lapply(DJList, FUN=plotDJ) |
335 sampleFile <- file("samples.txt") | 404 } |
336 un = unique(test$Sample) | 405 |
337 un = paste(un, sep="\n") | 406 |
338 writeLines(un, sampleFile) | 407 # ---------------------- calculating the clonality score ---------------------- |
339 close(sampleFile) | 408 |
340 | 409 if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available |
341 | |
342 if("Replicate" %in% colnames(test)) | |
343 { | 410 { |
344 clonalityFrame = PROD | 411 clonalityFrame = inputdata |
345 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | 412 if(clonaltype != "none"){ |
346 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | 413 clonalityFrame$ReplicateConcat = paste(clonalityFrame$clonaltype, clonalityFrame$Sample, clonalityFrame$Replicate, sep = ":") |
347 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | 414 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] |
348 | 415 } |
349 ClonalitySampleReplicatePrint <- function(dat){ | 416 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) |
350 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | 417 |
351 } | 418 ClonalitySampleReplicatePrint <- function(dat){ |
352 | 419 write.table(dat, paste("clonality_", unique(inputdata$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) |
353 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) | 420 } |
354 #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) | 421 |
355 | 422 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) |
356 ClonalitySamplePrint <- function(dat){ | 423 #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) |
357 write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | 424 |
358 } | 425 ClonalitySamplePrint <- function(dat){ |
359 | 426 write.table(dat, paste("clonality_", unique(inputdata$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) |
360 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) | 427 } |
361 #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) | 428 |
362 | 429 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) |
363 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | 430 #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) |
364 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | 431 |
365 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | 432 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")]) |
366 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | 433 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) |
367 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | 434 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count |
368 | 435 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) |
369 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | 436 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") |
370 tcct = textConnection(ct) | 437 |
371 CT = read.table(tcct, sep="\t", header=TRUE) | 438 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') |
372 close(tcct) | 439 tcct = textConnection(ct) |
373 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | 440 CT = read.table(tcct, sep="\t", header=TRUE) |
374 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | 441 close(tcct) |
375 | 442 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) |
376 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | 443 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight |
377 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | 444 |
378 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | 445 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")]) |
379 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | 446 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) |
380 | 447 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) |
381 ReplicatePrint <- function(dat){ | 448 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads |
382 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | 449 |
383 } | 450 ReplicatePrint <- function(dat){ |
384 | 451 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) |
385 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | 452 } |
386 lapply(ReplicateSplit, FUN=ReplicatePrint) | 453 |
387 | 454 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) |
388 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | 455 lapply(ReplicateSplit, FUN=ReplicatePrint) |
389 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | 456 |
390 | 457 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) |
391 | 458 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) |
392 ReplicateSumPrint <- function(dat){ | 459 |
393 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | 460 |
394 } | 461 ReplicateSumPrint <- function(dat){ |
395 | 462 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) |
396 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | 463 } |
397 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | 464 |
398 | 465 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) |
399 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | 466 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) |
400 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | 467 |
401 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | 468 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) |
402 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | 469 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) |
403 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | 470 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow |
404 | 471 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) |
405 ClonalityScorePrint <- function(dat){ | 472 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) |
406 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | 473 |
407 } | 474 ClonalityScorePrint <- function(dat){ |
408 | 475 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) |
409 clonalityScore = clonalFreqCount[c("Sample", "Result")] | 476 } |
410 clonalityScore = unique(clonalityScore) | 477 |
411 | 478 clonalityScore = clonalFreqCount[c("Sample", "Result")] |
412 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | 479 clonalityScore = unique(clonalityScore) |
413 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | 480 |
414 | 481 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) |
415 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | 482 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) |
416 | 483 |
417 | 484 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] |
418 | 485 |
419 ClonalityOverviewPrint <- function(dat){ | 486 |
420 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | 487 |
421 } | 488 ClonalityOverviewPrint <- function(dat){ |
422 | 489 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) |
423 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | 490 } |
424 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | 491 |
425 } | 492 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) |
426 | 493 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) |
427 if("Functionality" %in% colnames(test)) | 494 } |
495 | |
496 imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb") | |
497 if(all(imgtcolumns %in% colnames(inputdata))) | |
428 { | 498 { |
429 newData = data.frame(data.table(PROD)[,list(unique=.N, | 499 newData = data.frame(data.table(inputdata)[,list(unique=.N, |
430 VH.DEL=mean(X3V.REGION.trimmed.nt.nb), | 500 VH.DEL=mean(X3V.REGION.trimmed.nt.nb, na.rm=T), |
431 P1=mean(P3V.nt.nb), | 501 P1=mean(P3V.nt.nb, na.rm=T), |
432 N1=mean(N1.REGION.nt.nb), | 502 N1=mean(N1.REGION.nt.nb, na.rm=T), |
433 P2=mean(P5D.nt.nb), | 503 P2=mean(P5D.nt.nb, na.rm=T), |
434 DEL.DH=mean(X5D.REGION.trimmed.nt.nb), | 504 DEL.DH=mean(X5D.REGION.trimmed.nt.nb, na.rm=T), |
435 DH.DEL=mean(X3D.REGION.trimmed.nt.nb), | 505 DH.DEL=mean(X3D.REGION.trimmed.nt.nb, na.rm=T), |
436 P3=mean(P3D.nt.nb), | 506 P3=mean(P3D.nt.nb, na.rm=T), |
437 N2=mean(N2.REGION.nt.nb), | 507 N2=mean(N2.REGION.nt.nb, na.rm=T), |
438 P4=mean(P5J.nt.nb), | 508 P4=mean(P5J.nt.nb, na.rm=T), |
439 DEL.JH=mean(X5J.REGION.trimmed.nt.nb), | 509 DEL.JH=mean(X5J.REGION.trimmed.nt.nb, na.rm=T), |
440 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + | 510 Total.Del=( mean(X3V.REGION.trimmed.nt.nb, na.rm=T) + |
441 mean(X5D.REGION.trimmed.nt.nb) + | 511 mean(X5D.REGION.trimmed.nt.nb, na.rm=T) + |
442 mean(X3D.REGION.trimmed.nt.nb) + | 512 mean(X3D.REGION.trimmed.nt.nb, na.rm=T) + |
443 mean(X5J.REGION.trimmed.nt.nb)), | 513 mean(X5J.REGION.trimmed.nt.nb, na.rm=T)), |
444 | 514 |
445 Total.N=( mean(N1.REGION.nt.nb) + | 515 Total.N=( mean(N1.REGION.nt.nb, na.rm=T) + |
446 mean(N2.REGION.nt.nb)), | 516 mean(N2.REGION.nt.nb, na.rm=T)), |
447 | 517 |
448 Total.P=( mean(P3V.nt.nb) + | 518 Total.P=( mean(P3V.nt.nb, na.rm=T) + |
449 mean(P5D.nt.nb) + | 519 mean(P5D.nt.nb, na.rm=T) + |
450 mean(P3D.nt.nb) + | 520 mean(P3D.nt.nb, na.rm=T) + |
451 mean(P5J.nt.nb))), | 521 mean(P5J.nt.nb, na.rm=T))), |
452 by=c("Sample")]) | 522 by=c("Sample")]) |
453 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | 523 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) |
454 } | 524 } |