1
|
1 #######################################################################
|
|
2 #######################################################################
|
|
3 # CoNIFER: Copy Number Inference From Exome Reads
|
|
4 # Developed by Niklas Krumm (C) 2012
|
|
5 # nkrumm@gmail.com
|
|
6 #
|
|
7 # homepage: http://conifer.sf.net
|
|
8 # This program is described in:
|
|
9 # Krumm et al. 2012. Genome Research. doi:10.1101/gr.138115.112
|
|
10 #
|
|
11 # This file is part of CoNIFER.
|
|
12 # CoNIFER is free software: you can redistribute it and/or modify
|
|
13 # it under the terms of the GNU General Public License as published by
|
|
14 # the Free Software Foundation, either version 3 of the License, or
|
|
15 # (at your option) any later version.
|
|
16 #
|
|
17 # This program is distributed in the hope that it will be useful,
|
|
18 # but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
20 # GNU General Public License for more details.
|
|
21 #
|
|
22 # You should have received a copy of the GNU General Public License
|
|
23 # along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
24 #######################################################################
|
|
25 #######################################################################
|
|
26
|
|
27 import argparse
|
|
28 import os, sys, copy
|
|
29 import glob
|
|
30 import csv
|
|
31 import conifer_functions as cf
|
|
32 import operator
|
|
33 from tables import *
|
|
34 import numpy as np
|
|
35
|
|
36 def CF_analyze(args):
|
|
37 # do path/file checks:
|
|
38 try:
|
|
39 # read probes table
|
|
40 probe_fn = str(args.probes[0])
|
|
41 probes = cf.loadProbeList(probe_fn)
|
|
42 num_probes = len(probes)
|
|
43 print '[INIT] Successfully read in %d probes from %s' % (num_probes, probe_fn)
|
|
44 except IOError as e:
|
|
45 print '[ERROR] Cannot read probes file: ', probe_fn
|
|
46 sys.exit(0)
|
|
47
|
|
48 try:
|
|
49 svd_outfile_fn = str(args.output)
|
|
50 # h5file_out = openFile(svd_outfile_fn, mode='w')
|
|
51 h5file_out = open_file(svd_outfile_fn, mode='w')
|
|
52 # probe_group = h5file_out.createGroup("/","probes","probes")
|
|
53 probe_group = h5file_out.create_group("/","probes","probes")
|
|
54 except IOError as e:
|
|
55 print '[ERROR] Cannot open SVD output file for writing: ', svd_outfile_fn
|
|
56 sys.exit(0)
|
|
57
|
|
58 if args.write_svals != "":
|
|
59 sval_f = open(args.write_svals,'w')
|
|
60
|
|
61 if args.plot_scree != "":
|
|
62 try:
|
|
63 import matplotlib
|
|
64 matplotlib.use('Agg')
|
|
65 import matplotlib.pyplot as plt
|
|
66 import pylab as P
|
|
67 from matplotlib.lines import Line2D
|
|
68 from matplotlib.patches import Rectangle
|
|
69 except:
|
|
70 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?"
|
|
71 sys.exit(0)
|
|
72
|
|
73 plt.gcf().clear()
|
|
74 fig = plt.figure(figsize=(10,5))
|
|
75 ax = fig.add_subplot(111)
|
|
76
|
|
77 rpkm_dir = str(args.rpkm_dir[0])
|
|
78 rpkm_files = glob.glob(rpkm_dir + "/*")
|
|
79 if len(rpkm_files) == 0:
|
|
80 print '[ERROR] Cannot find any files in RPKM directory (or directory path is incorrect): ', rpkm_dir
|
|
81 sys.exit(0)
|
|
82 elif len(rpkm_files) == 1:
|
|
83 print '[ERROR] Found only 1 RPKM file (sample). CoNIFER requires multiple samples (8 or more) to run. Exiting.'
|
|
84 sys.exit(0)
|
|
85 elif len(rpkm_files) < 8:
|
|
86 print '[WARNING] Only found %d samples... this is less than the recommended minimum, and CoNIFER may not analyze this dataset correctly!' % len(rpkm_files)
|
|
87 elif len(rpkm_files) <= int(args.svd):
|
|
88 print '[ERROR] The number of SVD values specified (%d) must be less than the number of samples (%d). Either add more samples to the analysis or reduce the --svd parameter! Exiting.' % (len(rpkm_files), int(args.svd))
|
|
89 sys.exit(0)
|
|
90 else:
|
|
91 print '[INIT] Found %d RPKM files in %s' % (len(rpkm_files), rpkm_dir)
|
|
92
|
|
93 # read in samples names and generate file list
|
|
94 samples = {}
|
|
95 for f in rpkm_files:
|
|
96 s = '.'.join(f.split('/')[-1].split('.')[0:-1])
|
|
97 print "[INIT] Mapping file to sampleID: %s --> %s" % (f, s)
|
|
98 samples[s] = f
|
|
99
|
|
100 #check uniqueness and total # of samples
|
|
101 if len(set(samples)) != len(set(rpkm_files)):
|
|
102 print '[ERROR] Could not successfully derive sample names from RPKM filenames. There are probably non-unique sample names! Please rename files using <sampleID>.txt format!'
|
|
103 sys.exit(0)
|
|
104
|
|
105 # LOAD RPKM DATA
|
|
106 RPKM_data = np.zeros([num_probes,len(samples)], dtype=np.float)
|
|
107 failed_samples = 0
|
|
108
|
|
109 for i,s in enumerate(samples.keys()):
|
|
110 t = np.loadtxt(samples[s], dtype=np.float, delimiter="\t", skiprows=0, usecols=[2])
|
|
111 if len(t) != num_probes:
|
|
112 print "[WARNING] Number of RPKM values for %s in file %s does not match number of defined probes in %s. **This sample will be dropped from analysis**!" % (s, samples[s], probe_fn)
|
|
113 _ = samples.pop(s)
|
|
114 failed_samples += 1
|
|
115 else:
|
|
116 RPKM_data[:,i] = t
|
|
117 print "[INIT] Successfully read RPKM data for sampleID: %s" % s
|
|
118
|
|
119 RPKM_data = RPKM_data[:,0:len(samples)]
|
|
120 print "[INIT] Finished reading RPKM files. Total number of samples in experiment: %d (%d failed to read properly)" % (len(samples), failed_samples)
|
|
121
|
|
122 if len(samples) <= int(args.svd):
|
|
123 print '[ERROR] The number of SVD values specified (%d) must be less than the number of samples (%d). Either add more samples to the analysis or reduce the --svd parameter! Exiting.' % (int(args.svd), len(samples))
|
|
124 sys.exit(0)
|
|
125
|
|
126 # BEGIN
|
|
127 chrs_to_process = set(map(operator.itemgetter("chr"),probes))
|
|
128 chrs_to_process_str = ', '.join([cf.chrInt2Str(c) for c in chrs_to_process])
|
|
129 print '[INIT] Attempting to process chromosomes: ', chrs_to_process_str
|
|
130
|
|
131
|
|
132
|
|
133 for chr in chrs_to_process:
|
|
134 print "[RUNNING: chr%d] Now on: %s" %(chr, cf.chrInt2Str(chr))
|
|
135 chr_group_name = "chr%d" % chr
|
|
136 # chr_group = h5file_out.createGroup("/",chr_group_name,chr_group_name)
|
|
137 chr_group = h5file_out.create_group("/",chr_group_name,chr_group_name)
|
|
138
|
|
139 chr_probes = filter(lambda i: i["chr"] == chr, probes)
|
|
140 num_chr_probes = len(chr_probes)
|
|
141 start_probeID = chr_probes[0]['probeID']
|
|
142 stop_probeID = chr_probes[-1]['probeID']
|
|
143 print "[RUNNING: chr%d] Found %d probes; probeID range is [%d-%d]" % (chr, len(chr_probes), start_probeID-1, stop_probeID) # probeID is 1-based and slicing is 0-based, hence the start_probeID-1 term
|
|
144
|
|
145 rpkm = RPKM_data[start_probeID:stop_probeID,:]
|
|
146
|
|
147 print "[RUNNING: chr%d] Calculating median RPKM" % chr
|
|
148 median = np.median(rpkm,1)
|
|
149 sd = np.std(rpkm,1)
|
|
150 probe_mask = median >= float(args.min_rpkm)
|
|
151 print "[RUNNING: chr%d] Masking %d probes with median RPKM < %f" % (chr, np.sum(probe_mask==False), float(args.min_rpkm))
|
|
152
|
|
153 rpkm = rpkm[probe_mask, :]
|
|
154 num_chr_probes = np.sum(probe_mask)
|
|
155
|
|
156 if num_chr_probes <= len(samples):
|
|
157 print "[ERROR] This chromosome has fewer informative probes than there are samples in the analysis! There are probably no mappings on this chromosome. Please remove these probes from the probes.txt file"
|
|
158 sys.exit(0)
|
|
159
|
|
160 probeIDs = np.array(map(operator.itemgetter("probeID"),chr_probes))[probe_mask]
|
|
161 probe_starts = np.array(map(operator.itemgetter("start"),chr_probes))[probe_mask]
|
|
162 probe_stops = np.array(map(operator.itemgetter("stop"),chr_probes))[probe_mask]
|
|
163 gene_names = np.array(map(operator.itemgetter("name"),chr_probes))[probe_mask]
|
|
164
|
|
165 dt = np.dtype([('probeID',np.uint32),('start',np.uint32),('stop',np.uint32), ('name', np.str_, 20)])
|
|
166
|
|
167 out_probes = np.empty(num_chr_probes,dtype=dt)
|
|
168 out_probes['probeID'] = probeIDs
|
|
169 out_probes['start'] = probe_starts
|
|
170 out_probes['stop'] = probe_stops
|
|
171 out_probes['name'] = gene_names
|
|
172 # probe_table = h5file_out.createTable(probe_group,"probes_chr%d" % chr,cf.probe,"chr%d" % chr)
|
|
173 probe_table = h5file_out.create_table(probe_group,"probes_chr%d" % chr,cf.probe,"chr%d" % chr)
|
|
174 probe_table.append(out_probes)
|
|
175
|
|
176 print "[RUNNING: chr%d] Calculating ZRPKM scores..." % chr
|
|
177 rpkm = np.apply_along_axis(cf.zrpkm, 0, rpkm, median[probe_mask], sd[probe_mask])
|
|
178
|
|
179 # svd transform
|
|
180 print "[RUNNING: chr%d] SVD decomposition..." % chr
|
|
181 components_removed = int(args.svd)
|
|
182
|
|
183 U, S, Vt = np.linalg.svd(rpkm,full_matrices=False)
|
|
184 new_S = np.diag(np.hstack([np.zeros([components_removed]),S[components_removed:]]))
|
|
185
|
|
186 if args.write_svals != "":
|
|
187 sval_f.write('chr' + str(chr) + '\t' + '\t'.join([str(_i) for _i in S]) + "\n")
|
|
188
|
|
189 if args.plot_scree != "":
|
|
190 ax.plot(S, label='chr' + str(chr),lw=0.5)
|
|
191
|
|
192 # reconstruct data matrix
|
|
193 rpkm = np.dot(U, np.dot(new_S, Vt))
|
|
194
|
|
195
|
|
196 # save to HDF5 file
|
|
197 print "[RUNNING: chr%d] Saving SVD-ZRPKM values" % chr
|
|
198
|
|
199 for i,s in enumerate(samples):
|
|
200 out_data = np.empty(num_chr_probes,dtype='u4,f8')
|
|
201 out_data['f0'] = probeIDs
|
|
202 out_data['f1'] = rpkm[:,i]
|
|
203 # sample_tbl = h5file_out.createTable(chr_group,"sample_" + str(s),cf.rpkm_value,"%s" % str(s))
|
|
204 sample_tbl = h5file_out.create_table(chr_group,"sample_" + str(s),cf.rpkm_value,"%s" % str(s))
|
|
205 sample_tbl.append(out_data)
|
|
206
|
|
207
|
|
208 print "[RUNNING] Saving sampleIDs to file..."
|
|
209 # sample_group = h5file_out.createGroup("/","samples","samples")
|
|
210 # sample_table = h5file_out.createTable(sample_group,"samples",cf.sample,"samples")
|
|
211 sample_group = h5file_out.create_group("/","samples","samples")
|
|
212 sample_table = h5file_out.create_table(sample_group,"samples",cf.sample,"samples")
|
|
213 dt = np.dtype([('sampleID',np.str_,100)])
|
|
214 out_samples = np.empty(len(samples.keys()),dtype=dt)
|
|
215 out_samples['sampleID'] = np.array(samples.keys())
|
|
216 sample_table.append(out_samples)
|
|
217
|
|
218
|
|
219 if args.write_sd != "":
|
|
220 print "[RUNNING] Calculating standard deviations for all samples (this can take a while)..."
|
|
221
|
|
222 sd_file = open(args.write_sd,'w')
|
|
223
|
|
224 for i,s in enumerate(samples):
|
|
225 # collect all SVD-ZRPKM values
|
|
226 count = 1
|
|
227 for chr in chrs_to_process:
|
|
228 if count == 1:
|
|
229 sd_out = h5file_out.root._f_getChild("chr%d" % chr)._f_getChild("sample_%s" % s).read(field="rpkm").flatten()
|
|
230 else:
|
|
231 sd_out = np.hstack([sd_out,out.h5file_out.root._f_getChild("chr%d" % chr)._f_getChild("sample_%s" % s).read(field="rpkm").flatten()])
|
|
232
|
|
233 sd = np.std(sd_out)
|
|
234 sd_file.write("%s\t%f\n" % (s,sd))
|
|
235
|
|
236 sd_file.close()
|
|
237
|
|
238 if args.plot_scree != "":
|
|
239 plt.title("Scree plot")
|
|
240 if len(samples) < 50:
|
|
241 plt.xlim([0,len(samples)])
|
|
242 plt.xlabel("S values")
|
|
243 else:
|
|
244 plt.xlim([0,50])
|
|
245 plt.xlabel("S values (only first 50 plotted)")
|
|
246 plt.ylabel("Relative contributed variance")
|
|
247 plt.savefig(args.plot_scree)
|
|
248
|
|
249 print "[FINISHED]"
|
|
250 h5file_out.close()
|
|
251 sys.exit(0)
|
|
252
|
|
253 def CF_export(args):
|
|
254 try:
|
|
255 h5file_in_fn = str(args.input)
|
|
256 # h5file_in = openFile(h5file_in_fn, mode='r')
|
|
257 h5file_in = open_file(h5file_in_fn, mode='r')
|
|
258 except IOError as e:
|
|
259 print '[ERROR] Cannot open CoNIFER input file for reading: ', h5file_in_fn
|
|
260 sys.exit(0)
|
|
261
|
|
262 # read probes
|
|
263 probes = {}
|
|
264 for probes_chr in h5file_in.root.probes:
|
|
265 probes[probes_chr.title] = probes_chr.read()
|
|
266
|
|
267 if args.sample =='all':
|
|
268 all_samples = list(h5file_in.root.samples.samples.read(field="sampleID"))
|
|
269
|
|
270 out_path = os.path.abspath(args.output)
|
|
271
|
|
272 print "[INIT] Preparing to export all samples (%d samples) to %s" % (len(all_samples), out_path)
|
|
273 for sample in all_samples:
|
|
274 try:
|
|
275 outfile_fn = out_path + "/" + sample + ".bed"
|
|
276 outfile_f = open(outfile_fn,'w')
|
|
277 except IOError as e:
|
|
278 print '[ERROR] Cannot open output file for writing: ', outfile_fn
|
|
279 sys.exit(0)
|
|
280 print "[RUNNING] Exporting %s" % sample
|
|
281
|
|
282 cf.export_sample(h5file_in,sample,probes,outfile_f)
|
|
283 outfile_f.close()
|
|
284
|
|
285 elif len(args.sample) == 1:
|
|
286 out_path = os.path.abspath(args.output)
|
|
287 sample = args.sample[0]
|
|
288 print "[INIT] Preparing to export sampleID %s to %s" % (args.sample[0], out_path)
|
|
289 try:
|
|
290 if os.path.isdir(out_path):
|
|
291 outfile_fn = out_path + "/" + sample + ".bed"
|
|
292 else:
|
|
293 outfile_fn = out_path
|
|
294 outfile_f = open(outfile_fn,'w')
|
|
295 except IOError as e:
|
|
296 print '[ERROR] Cannot open output file for writing: ', outfile_fn
|
|
297 sys.exit(0)
|
|
298 print "[RUNNING] Exporting %s to %s" % (sample, outfile_fn)
|
|
299
|
|
300 cf.export_sample(h5file_in,sample,probes,outfile_f)
|
|
301 outfile_f.close()
|
|
302
|
|
303 else:
|
|
304 out_path = os.path.abspath(args.output)
|
|
305 print "[INIT] Preparing to export %d samples to %s" % (len(args.sample), out_path)
|
|
306 for sample in args.sample:
|
|
307 try:
|
|
308 if os.path.isdir(out_path):
|
|
309 outfile_fn = out_path + "/" + sample + ".bed"
|
|
310 else:
|
|
311 outfile_fn = out_path
|
|
312 outfile_f = open(outfile_fn,'w')
|
|
313 except IOError as e:
|
|
314 print '[ERROR] Cannot open output file for writing: ', outfile_fn
|
|
315 sys.exit(0)
|
|
316 print "[RUNNING] Exporting %s to %s" % (sample, outfile_fn)
|
|
317
|
|
318 cf.export_sample(h5file_in,sample,probes,outfile_f)
|
|
319 outfile_f.close()
|
|
320 sys.exit(0)
|
|
321
|
|
322 def CF_call(args):
|
|
323 try:
|
|
324 h5file_in_fn = str(args.input)
|
|
325 # h5file_in = openFile(h5file_in_fn, mode='r')
|
|
326 h5file_in = open_file(h5file_in_fn, mode='r')
|
|
327 except IOError as e:
|
|
328 print '[ERROR] Cannot open CoNIFER input file for reading: ', h5file_in_fn
|
|
329 sys.exit(0)
|
|
330
|
|
331 try:
|
|
332 callfile_fn = str(args.output)
|
|
333 callfile_f = open(callfile_fn, mode='w')
|
|
334 except IOError as e:
|
|
335 print '[ERROR] Cannot open output file for writing: ', callfile_fn
|
|
336 sys.exit(0)
|
|
337
|
|
338 chrs_to_process = []
|
|
339 for chr in h5file_in.root:
|
|
340 if chr._v_title not in ('probes','samples'):
|
|
341 chrs_to_process.append(chr._v_title.replace("chr",""))
|
|
342
|
|
343 h5file_in.close()
|
|
344
|
|
345 print '[INIT] Initializing caller at threshold = %f' % (args.threshold)
|
|
346
|
|
347 r = cf.rpkm_reader(h5file_in_fn)
|
|
348
|
|
349 all_calls = []
|
|
350
|
|
351 for chr in chrs_to_process:
|
|
352 print '[RUNNING] Now processing chr%s' % chr
|
|
353 data = r.getExonValuesByRegion(chr)
|
|
354
|
|
355 #raw_data = copy.copy(data)
|
|
356 _ = data.smooth()
|
|
357
|
|
358 mean= np.mean(data.rpkm,axis=1)
|
|
359 sd = np.std(data.rpkm,axis=1)
|
|
360
|
|
361 for sample in r.getSampleList():
|
|
362 sample_data = data.getSample([sample]).flatten()
|
|
363 #sample_raw_data = raw_data.getSample([sample]).flatten()
|
|
364
|
|
365 dup_mask = sample_data >= args.threshold
|
|
366 del_mask = sample_data <= -1*args.threshold
|
|
367
|
|
368 dup_bkpoints = cf.getbkpoints(dup_mask) #returns exon coordinates for this chromosome (numpy array coords)
|
|
369 del_bkpoints = cf.getbkpoints(del_mask)
|
|
370
|
|
371
|
|
372 dups = []
|
|
373 for start,stop in dup_bkpoints:
|
|
374 try: new_start = np.max(np.where(sample_data[:start] < (mean[:start] + 3*sd[:start])))
|
|
375 except ValueError: new_start = 0
|
|
376 try: new_stop = stop + np.min(np.where(sample_data[stop:] < (mean[stop:] + 3*sd[stop:])))
|
|
377 except ValueError: new_stop = data.shape[1]-1
|
|
378 dups.append({"sampleID":sample,"chromosome": cf.chrInt2Str(chr), "start":data.exons[new_start]["start"], "stop": data.exons[new_stop]["stop"], "state": "dup"})
|
|
379
|
|
380 dels = []
|
|
381 for start,stop in del_bkpoints:
|
|
382 try: new_start = np.max(np.where(sample_data[:start] > (-1*mean[:start] - 3*sd[:start])))
|
|
383 except ValueError: new_start = 0
|
|
384 try: new_stop = stop + np.min(np.where(sample_data[stop:] > (-1*mean[stop:] - 3*sd[stop:])))
|
|
385 except ValueError: new_stop = data.shape[1]-1
|
|
386 dels.append({"sampleID":sample,"chromosome": cf.chrInt2Str(chr), "start":data.exons[new_start]["start"], "stop": data.exons[new_stop]["stop"], "state": "del"})
|
|
387
|
|
388 dels = cf.mergeCalls(dels) #merges overlapping calls
|
|
389 dups = cf.mergeCalls(dups)
|
|
390
|
|
391 #print sampleID, len(dels), len(dups)
|
|
392
|
|
393 all_calls.extend(list(dels))
|
|
394 all_calls.extend(list(dups))
|
|
395
|
|
396 # print calls to file
|
|
397 header = ['sampleID','chromosome','start','stop','state']
|
|
398
|
|
399 callfile_f.write('\t'.join(header) + "\n")
|
|
400 for call in all_calls:
|
|
401 print "%s\t%s\t%d\t%d\t%s" % (call["sampleID"], call["chromosome"], call["start"], call["stop"], call["state"])
|
|
402 callfile_f.write("%s\t%s\t%d\t%d\t%s\n" % (call["sampleID"], call["chromosome"], call["start"], call["stop"], call["state"]))
|
|
403
|
|
404 sys.exit(0)
|
|
405
|
|
406 def CF_plot(args):
|
|
407 try:
|
|
408 import locale
|
|
409 import matplotlib
|
|
410 matplotlib.use('Agg')
|
|
411 import matplotlib.pyplot as plt
|
|
412 import pylab as P
|
|
413 from matplotlib.lines import Line2D
|
|
414 from matplotlib.patches import Rectangle
|
|
415 _ = locale.setlocale(locale.LC_ALL, '')
|
|
416 except:
|
|
417 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?"
|
|
418 sys.exit(0)
|
|
419
|
|
420
|
|
421 chr, start, stop = cf.parseLocString(args.region)
|
|
422
|
|
423 r = cf.rpkm_reader(args.input)
|
|
424
|
|
425 data = r.getExonValuesByRegion(chr,start,stop)
|
|
426 _ = data.smooth()
|
|
427
|
|
428 plt.gcf().clear()
|
|
429 fig = plt.figure(figsize=(10,5))
|
|
430 ax = fig.add_subplot(111)
|
|
431
|
|
432
|
|
433 ax.plot(data.rpkm, linewidth = 0.3, c='k')
|
|
434
|
|
435
|
|
436 if args.sample != 'none':
|
|
437 cnt = 1
|
|
438 coloriter = iter(['r','b','g','y'])
|
|
439 for sample in args.sample:
|
|
440 try:
|
|
441 color, sampleID = sample.split(":")
|
|
442 except:
|
|
443 color =coloriter.next()
|
|
444 sampleID = sample
|
|
445
|
|
446 ax.plot(data.getSample([sampleID]), linewidth = 1, c=color, label = sampleID)
|
|
447
|
|
448 if cnt == 1:
|
|
449 cf.plotRawData(ax, r.getExonValuesByRegion(chr,start,stop,sampleList=[sampleID]).getSample([sampleID]),color=color)
|
|
450 cnt +=1
|
|
451 plt.legend(prop={'size':10},frameon=False)
|
|
452
|
|
453 cf.plotGenes(ax, data)
|
|
454 cf.plotGenomicCoords(plt,data)
|
|
455 plt.xlim(0,data.shape[1])
|
|
456 plt.ylim(-3,3)
|
|
457
|
|
458 plt.title("%s: %s - %s" % (cf.chrInt2Str(chr),locale.format("%d",start, grouping=True),locale.format("%d",stop, grouping=True)))
|
|
459 plt.xlabel("Position")
|
|
460 plt.ylabel("SVD-ZRPKM Values")
|
|
461
|
|
462 plt.savefig(args.output)
|
|
463
|
|
464 sys.exit(0)
|
|
465
|
|
466 def CF_plotcalls(args):
|
|
467 try:
|
|
468 import matplotlib
|
|
469 matplotlib.use('Agg')
|
|
470 import matplotlib.pyplot as plt
|
|
471 import pylab as P
|
|
472 from matplotlib.lines import Line2D
|
|
473 from matplotlib.patches import Rectangle
|
|
474 except:
|
|
475 print "[ERROR] One or more of the required modules for plotting cannot be loaded! Are matplotlib and pylab installed?"
|
|
476 sys.exit(0)
|
|
477
|
|
478 import locale
|
|
479 try:
|
|
480 _ = locale.setlocale(locale.LC_ALL, 'en_US')
|
|
481 except:
|
|
482 _ = locale.setlocale(locale.LC_ALL, '')
|
|
483
|
|
484 try:
|
|
485 callfile_fn = str(args.calls)
|
|
486 callfile_f = open(callfile_fn, mode='r')
|
|
487 except IOError as e:
|
|
488 print '[ERROR] Cannot open call file for reading: ', callfile_fn
|
|
489 sys.exit(0)
|
|
490
|
|
491 all_calls = []
|
|
492 header = callfile_f.readline()
|
|
493
|
|
494 for line in callfile_f:
|
|
495 sampleID, chr, start, stop, state = line.strip().split()
|
|
496 chr = cf.chrStr2Int(chr)
|
|
497 all_calls.append({"chromosome":int(chr), "start":int(start), "stop":int(stop), "sampleID":sampleID})
|
|
498
|
|
499 r = cf.rpkm_reader(args.input)
|
|
500
|
|
501 for call in all_calls:
|
|
502 chr = call["chromosome"]
|
|
503 start = call["start"]
|
|
504 stop = call["stop"]
|
|
505 sampleID = call["sampleID"]
|
|
506
|
|
507 exons = r.getExonIDs(chr,int(start),int(stop))
|
|
508
|
|
509
|
|
510 window_start = max(exons[0]-args.window,0)
|
|
511 window_stop = exons[-1]+args.window
|
|
512
|
|
513 data = r.getExonValuesByExons(chr,window_start, window_stop)
|
|
514 _ = data.smooth()
|
|
515
|
|
516 plt.gcf().clear()
|
|
517 fig = plt.figure(figsize=(10,5))
|
|
518 ax = fig.add_subplot(111)
|
|
519
|
|
520
|
|
521 ax.plot(data.rpkm, linewidth = 0.3, c='k')
|
|
522
|
|
523
|
|
524 ax.plot(data.getSample([sampleID]), linewidth = 1, c='r', label = sampleID)
|
|
525 cf.plotRawData(ax, r.getExonValuesByExons(chr,window_start, window_stop,sampleList=[sampleID]).getSample([sampleID]),color='r')
|
|
526
|
|
527 plt.legend(prop={'size':10},frameon=False)
|
|
528
|
|
529 cf.plotGenes(ax, data)
|
|
530 cf.plotGenomicCoords(plt,data)
|
|
531
|
|
532 exon_start = np.where(data.exons["start"] == start)[0][0]
|
|
533 exon_stop = np.where(data.exons["stop"] == stop)[0][0]
|
|
534 _ = ax.add_line(matplotlib.lines.Line2D([exon_start,exon_stop],[2,2],color='k',lw=6,linestyle='-',alpha=1,solid_capstyle='butt'))
|
|
535
|
|
536 _ = plt.xlim(0,data.shape[1])
|
|
537 _ = plt.ylim(-3,3)
|
|
538
|
|
539 plt.title("%s: %s - %s" % (cf.chrInt2Str(chr),locale.format("%d",start, grouping=True),locale.format("%d",stop, grouping=True)))
|
|
540 plt.xlabel("Position")
|
|
541 plt.ylabel("SVD-ZRPKM Values")
|
|
542 outfile = "%s_%d_%d_%s.png" % (cf.chrInt2Str(chr), start, stop, sampleID)
|
|
543 plt.savefig(args.outputdir + "/" + outfile)
|
|
544
|
|
545 def CF_bam2RPKM(args):
|
|
546 try:
|
|
547 import pysam
|
|
548 except:
|
|
549 print '[ERROR] Cannot load pysam module! Make sure it is insalled'
|
|
550 sys.exit(0)
|
|
551 try:
|
|
552 # read probes table
|
|
553 probe_fn = str(args.probes[0])
|
|
554 probes = cf.loadProbeList(probe_fn)
|
|
555 num_probes = len(probes)
|
|
556 print '[INIT] Successfully read in %d probes from %s' % (num_probes, probe_fn)
|
|
557 except IOError as e:
|
|
558 print '[ERROR] Cannot read probes file: ', probe_fn
|
|
559 sys.exit(0)
|
|
560
|
|
561 try:
|
|
562 rpkm_f = open(args.output[0],'w')
|
|
563 except IOError as e:
|
|
564 print '[ERROR] Cannot open rpkm file for writing: ', args.output
|
|
565 sys.exit(0)
|
|
566
|
|
567 print "[RUNNING] Counting total number of reads in bam file..."
|
|
568 total_reads = float(pysam.view("-c", args.input[0])[0].strip("\n"))
|
|
569 print "[RUNNING] Found %d reads" % total_reads
|
|
570
|
|
571 f = pysam.Samfile(args.input[0], "rb" )
|
|
572
|
|
573 # if not f._hasIndex():
|
|
574 if not f.has_index():
|
|
575 print "[ERROR] No index found for bam file (%s)!\n[ERROR] You must first index the bam file and include the .bai file in the same directory as the bam file!" % args.input[0]
|
|
576 sys.exit(0)
|
|
577
|
|
578 # will be storing values in these arrays
|
|
579 readcount = np.zeros(num_probes)
|
|
580 exon_bp = np.zeros(num_probes)
|
|
581 probeIDs = np.zeros(num_probes)
|
|
582 counter = 0
|
|
583
|
|
584 # detect contig naming scheme here # TODO, add an optional "contigs.txt" file or automatically handle contig naming
|
|
585 bam_contigs = f.references
|
|
586 probes_contigs = [str(p) for p in set(map(operator.itemgetter("chr"),probes))]
|
|
587
|
|
588 probes2contigmap = {}
|
|
589
|
|
590 for probes_contig in probes_contigs:
|
|
591 if probes_contig in bam_contigs:
|
|
592 probes2contigmap[probes_contig] = probes_contig
|
|
593 elif cf.chrInt2Str(probes_contig) in bam_contigs:
|
|
594 probes2contigmap[probes_contig] = cf.chrInt2Str(probes_contig)
|
|
595 elif cf.chrInt2Str(probes_contig).replace("chr","") in bam_contigs:
|
|
596 probes2contigmap[probes_contig] = cf.chrInt2Str(probes_contig).replace("chr","")
|
|
597 else:
|
|
598 print "[ERROR] Could not find contig '%s' from %s in bam file! \n[ERROR] Perhaps the contig names for the probes are incompatible with the bam file ('chr1' vs. '1'), or unsupported contig naming is used?" % (probes_contig, probe_fn)
|
|
599 sys.exit(0)
|
|
600
|
|
601 print "[RUNNING] Calculating RPKM values..."
|
|
602
|
|
603 # loop through each probe
|
|
604 for p in probes:
|
|
605
|
|
606 # f.fetch is a pysam method and returns an iterator for reads overlapping interval
|
|
607
|
|
608 p_chr = probes2contigmap[str(p["chr"])]
|
|
609
|
|
610 p_start = p["start"]
|
|
611 p_stop = p["stop"]
|
|
612 try:
|
|
613 iter = f.fetch(p_chr,p_start,p_stop)
|
|
614 except:
|
|
615 print "[ERROR] Could not retrieve mappings for region %s:%d-%d. Check that contigs are named correctly and the bam file is properly indexed" % (p_chr,p_start,p_stop)
|
|
616 sys.exit(0)
|
|
617
|
|
618 for i in iter:
|
|
619 if i.pos+1 >= p_start: #this checks to make sure a read actually starts in an interval
|
|
620 readcount[counter] += 1
|
|
621
|
|
622 exon_bp[counter] = p_stop-p_start
|
|
623 probeIDs[counter] = counter +1 #probeIDs are 1-based
|
|
624 counter +=1
|
|
625
|
|
626 #calcualte RPKM values for all probes
|
|
627 rpkm = (10**9*(readcount)/(exon_bp))/(total_reads)
|
|
628
|
|
629 out = np.vstack([probeIDs,readcount,rpkm])
|
|
630
|
|
631 np.savetxt(rpkm_f,out.transpose(),delimiter='\t',fmt=['%d','%d','%f'])
|
|
632
|
|
633 rpkm_f.close()
|
|
634
|
|
635
|
|
636
|
|
637 VERSION = "0.2.2"
|
|
638 parser = argparse.ArgumentParser(prog="CoNIFER", description="This is CoNIFER %s (Copy Number Inference From Exome Reads), designed to detect and genotype CNVs and CNPs from exome sequence read-depth data. See Krumm et al., Genome Research (2012) doi:10.1101/gr.138115.112 \nNiklas Krumm, 2012\n nkrumm@uw.edu" % VERSION)
|
|
639 parser.add_argument('--version', action='version', version='%(prog)s ' + VERSION)
|
|
640 subparsers = parser.add_subparsers(help='Command to be run.')
|
|
641
|
|
642 # rpkm command
|
|
643 rpkm_parser= subparsers.add_parser('rpkm', help='Create an RPKM file from a BAM file')
|
|
644 rpkm_parser.add_argument('--probes',action='store', required=True, metavar='/path/to/probes_file.txt', nargs=1,help="Probe definition file")
|
|
645 rpkm_parser.add_argument('--input',action='store', required=True, metavar='sample.bam',nargs=1, help="Aligned BAM file")
|
|
646 rpkm_parser.add_argument('--output',action='store', required=True, metavar='sample.rpkm.txt',nargs=1, help="RPKM file to write")
|
|
647 rpkm_parser.set_defaults(func=CF_bam2RPKM)
|
|
648
|
|
649 # analyze command
|
|
650 analyze_parser= subparsers.add_parser('analyze', help='Basic CoNIFER analysis. Reads a directory of RPKM files and a probe list and outputs a HDF5 file containing SVD-ZRPKM values.')
|
|
651 analyze_parser.add_argument('--probes',action='store', required=True, metavar='/path/to/probes_file.txt', nargs=1,help="Probe definition file")
|
|
652 analyze_parser.add_argument('--rpkm_dir',action='store', required=True, metavar='/path/to/folder/containing/rpkm_files/',nargs=1, help="Location of folder containing RPKM files. Folder should contain ONLY contain RPKM files, and all readable RPKM files will used in analysis.")
|
|
653 analyze_parser.add_argument('--output','-o', required=True, metavar='/path/to/output_file.hdf5', type=str, help="Output location of HDF5 file to contain SVD-ZRPKM values")
|
|
654 analyze_parser.add_argument('--svd', metavar='12', type=int, nargs='?', default = 12,help="Number of components to remove")
|
|
655 analyze_parser.add_argument('--min_rpkm', metavar='1.00', type=float, nargs="?", default = 1.00,help="Minimum population median RPKM per probe.")
|
|
656 analyze_parser.add_argument('--write_svals', metavar='SingularValues.txt', type=str, default= "", help="Optional file to write singular values (S-values). Used for Scree Plot.")
|
|
657 analyze_parser.add_argument('--plot_scree', metavar='ScreePlot.png', type=str, default= "", help="Optional graphical scree plot. Requires matplotlib.")
|
|
658 analyze_parser.add_argument('--write_sd', metavar='StandardDeviations.txt', type=str, default= "", help="Optional file with sample SVD-ZRPKM standard deviations. Used to filter noisy samples.")
|
|
659 analyze_parser.set_defaults(func=CF_analyze)
|
|
660
|
|
661 # export command
|
|
662 export_parser= subparsers.add_parser('export', help='Export SVD-ZRPKM values from a HDF5 file to bed or vcf format.')
|
|
663 export_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step")
|
|
664 export_parser.add_argument('--output','-o',action='store', required=False, default='.', metavar='output.bed',help="Location of output file[s]. When exporting multiple samples, top-level directory of this path will be used.")
|
|
665 export_parser.add_argument('--sample','-s',action='store', required=False, metavar='sampleID', default='all', nargs="+",help="SampleID or comma-separated list of sampleIDs to export. Default: export all samples")
|
|
666 export_parser.set_defaults(func=CF_export)
|
|
667
|
|
668 # plot command
|
|
669 plot_parser= subparsers.add_parser('plot', help='Plot SVD-ZRPKM values using matplotlib')
|
|
670 plot_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step")
|
|
671 plot_parser.add_argument('--region',action='store', required=True, metavar='chr#:start-stop',help="Region to plot")
|
|
672 plot_parser.add_argument('--output',action='store', required=True, metavar='image.png',help="Output path and filetype. PDF, PNG, PS, EPS, and SVG are supported.")
|
|
673 plot_parser.add_argument('--sample',action='store', required=False, metavar='sampleID',nargs="+",default='none',help="Sample[s] to highlight. The following optional color spec can be used: <color>:<sampleID>. Available colors are r,b,g,y,c,m,y,k. The unsmoothed SVD-ZRPKM values for the first sample in this list will be drawn. Default: No samples highlighted.")
|
|
674 plot_parser.set_defaults(func=CF_plot)
|
|
675
|
|
676 # make calls command
|
|
677 call_parser= subparsers.add_parser('call', help='Very rudimentary caller for CNVs using SVD-ZRPKM thresholding.')
|
|
678 call_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step")
|
|
679 call_parser.add_argument('--output',action='store', required=True, metavar='calls.txt',help="Output file for calls")
|
|
680 call_parser.add_argument('--threshold', metavar='1.50', type=float, nargs='?', required=False, default = 1.50,help="+/- Threshold for calling (minimum SVD-ZRPKM)")
|
|
681 call_parser.set_defaults(func=CF_call)
|
|
682
|
|
683 # plotcalls command
|
|
684 plotcalls_parser= subparsers.add_parser('plotcalls', help='Make basic plots from call file from "call" command.')
|
|
685 plotcalls_parser.add_argument('--input','-i',action='store', required=True, metavar='CoNIFER_SVD.hdf5',help="HDF5 file from CoNIFER 'analyze' step")
|
|
686 plotcalls_parser.add_argument('--calls',action='store', required=True, metavar='calls.txt',help="File with calls from 'call' command.")
|
|
687 plotcalls_parser.add_argument('--outputdir',action='store', required=True, metavar='/path/to/directory',help="Output directory for plots")
|
|
688 plotcalls_parser.add_argument('--window',action='store', required=False, metavar='50',default=50,help="In exons, the amount of padding to plot around each call")
|
|
689 plotcalls_parser.set_defaults(func=CF_plotcalls)
|
|
690
|
|
691 args = parser.parse_args()
|
|
692 args.func(args)
|