80
|
1 #!/usr/bin/env python
|
|
2
|
|
3 #from galaxy import eggs
|
|
4
|
|
5 import sys, string
|
|
6 #from rpy import *
|
|
7
|
|
8 import rpy2.robjects as robjects
|
|
9 import rpy2.rlike.container as rlc
|
|
10 r = robjects.r
|
|
11 import numpy
|
|
12
|
|
13 #export PYTHONPATH=~/galaxy/lib/
|
|
14 #running command python partialR_square.py reg_inp.tab 4 1,2,3 partialR_result.tabular
|
|
15
|
|
16 def stop_err(msg):
|
|
17 sys.stderr.write(msg)
|
|
18 sys.exit()
|
|
19
|
|
20 def sscombs(s):
|
|
21 if len(s) == 1:
|
|
22 return [s]
|
|
23 else:
|
|
24 ssc = sscombs(s[1:])
|
|
25 return [s[0]] + [s[0]+comb for comb in ssc] + ssc
|
|
26
|
|
27
|
|
28 infile = sys.argv[1]
|
|
29 y_col = int(sys.argv[2])-1
|
|
30 x_cols = sys.argv[3].split(',')
|
|
31 outfile = sys.argv[4]
|
|
32
|
|
33 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
|
|
34 fout = open(outfile,'w')
|
|
35
|
|
36 for i, line in enumerate( file ( infile )):
|
|
37 line = line.rstrip('\r\n')
|
|
38 if len( line )>0 and not line.startswith( '#' ):
|
|
39 elems = line.split( '\t' )
|
|
40 break
|
|
41 if i == 30:
|
|
42 break # Hopefully we'll never get here...
|
|
43
|
|
44 if len( elems )<1:
|
|
45 stop_err( "The data in your input dataset is either missing or not formatted properly." )
|
|
46
|
|
47 y_vals = []
|
|
48 x_vals = []
|
|
49 x_vector = []
|
|
50 for k,col in enumerate(x_cols):
|
|
51 x_cols[k] = int(col)-1
|
|
52 x_vals.append([])
|
|
53 """
|
|
54 try:
|
|
55 float( elems[x_cols[k]] )
|
|
56 except:
|
|
57 try:
|
|
58 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] )
|
|
59 except:
|
|
60 msg = "This operation cannot be performed on non-numeric data."
|
|
61 stop_err( msg )
|
|
62 """
|
|
63 NA = 'NA'
|
|
64 for ind,line in enumerate( file( infile )):
|
|
65 if line and not line.startswith( '#' ):
|
|
66 try:
|
|
67 fields = line.split("\t")
|
|
68 try:
|
|
69 yval = float(fields[y_col])
|
|
70 except Exception, ey:
|
|
71 yval = r('NA')
|
|
72 #print >>sys.stderr, "ey = %s" %ey
|
|
73 y_vals.append(yval)
|
|
74 for k,col in enumerate(x_cols):
|
|
75 try:
|
|
76 xval = float(fields[col])
|
|
77 except Exception, ex:
|
|
78 xval = r('NA')
|
|
79 #print >>sys.stderr, "ex = %s" %ex
|
|
80 x_vals[k].append(xval)
|
|
81 x_vector.append(xval)
|
|
82 except:
|
|
83 pass
|
|
84
|
|
85 #x_vals1 = numpy.asarray(x_vals).transpose()
|
|
86 #dat= r.list(x=array(x_vals1), y=y_vals)
|
|
87
|
|
88 #set_default_mode(NO_CONVERSION)
|
|
89 #try:
|
|
90 # full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user
|
|
91 #except RException, rex:
|
|
92 # stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.")
|
|
93 #set_default_mode(BASIC_CONVERSION)
|
|
94
|
|
95 fv = robjects.FloatVector(x_vector)
|
|
96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
|
|
97 # ensure order for generating formula
|
|
98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
|
|
99 dat = robjects.DataFrame(od)
|
|
100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
|
|
101 formula = ' + '.join(dat.names).replace('+','~',1)
|
|
102 try:
|
|
103 full = r.lm(formula, data = r['na.exclude'](dat))
|
|
104 except RException, rex:
|
|
105 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
|
|
106
|
|
107
|
|
108
|
|
109 summary = r.summary(full)
|
|
110 #fullr2 = summary.get('r.squared','NA')
|
|
111 fullr2 = summary.rx2('r.squared')[0]
|
|
112
|
|
113 if fullr2 == 'NA':
|
|
114 stop_error("Error in linear regression")
|
|
115
|
|
116 if len(x_vals) < 10:
|
|
117 s = ""
|
|
118 for ch in range(len(x_vals)):
|
|
119 s += str(ch)
|
|
120 else:
|
|
121 stop_err("This tool only works with less than 10 predictors.")
|
|
122
|
|
123 print >>fout, "#Model\tR-sq\tpartial_R_Terms\tpartial_R_Value"
|
|
124 all_combos = sorted(sscombs(s), key=len)
|
|
125 all_combos.reverse()
|
|
126 for j,cols in enumerate(all_combos):
|
|
127 #if len(cols) == len(s): #Same as the full model above
|
|
128 # continue
|
|
129 if len(cols) == 1:
|
|
130 #x_vals1 = x_vals[int(cols)]
|
|
131 x_v = x_vals[int(cols)]
|
|
132 else:
|
|
133 x_v = []
|
|
134 for col in cols:
|
|
135 #x_v.append(x_vals[int(col)])
|
|
136 x_v.extend(x_vals[int(col)])
|
|
137 #x_vals1 = numpy.asarray(x_v).transpose()
|
|
138 #dat= r.list(x=array(x_vals1), y=y_vals)
|
|
139 #set_default_mode(NO_CONVERSION)
|
|
140 #red = r.lm(r("y ~ x"), data= dat) #Reduced model
|
|
141 #set_default_mode(BASIC_CONVERSION)
|
|
142 fv = robjects.FloatVector(x_v)
|
|
143 m = r['matrix'](fv, ncol=len(cols),byrow=False)
|
|
144 # ensure order for generating formula
|
|
145 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
|
|
146 dat = robjects.DataFrame(od)
|
|
147 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
|
|
148 formula = ' + '.join(dat.names).replace('+','~',1)
|
|
149 try:
|
|
150 red = r.lm(formula, data = r['na.exclude'](dat))
|
|
151 except RException, rex:
|
|
152 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
|
|
153
|
|
154
|
|
155 summary = r.summary(red)
|
|
156 #redr2 = summary.get('r.squared','NA')
|
|
157 redr2 = summary.rx2('r.squared')[0]
|
|
158
|
|
159 try:
|
|
160 partial_R = (float(fullr2)-float(redr2))/(1-float(redr2))
|
|
161 except:
|
|
162 partial_R = 'NA'
|
|
163 col_str = ""
|
|
164 for col in cols:
|
|
165 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " "
|
|
166 col_str.strip()
|
|
167 partial_R_col_str = ""
|
|
168 for col in s:
|
|
169 if col not in cols:
|
|
170 partial_R_col_str = partial_R_col_str + str(int(x_cols[int(col)]) + 1) + " "
|
|
171 partial_R_col_str.strip()
|
|
172 if len(cols) == len(s): #full model
|
|
173 partial_R_col_str = "-"
|
|
174 partial_R = "-"
|
|
175 try:
|
|
176 redr2 = "%.4f" %(float(redr2))
|
|
177 except:
|
|
178 pass
|
|
179 try:
|
|
180 partial_R = "%.4f" %(float(partial_R))
|
|
181 except:
|
|
182 pass
|
|
183 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,partial_R_col_str,partial_R)
|