Mercurial > repos > bgruening > upload_testing
view partialR_square.py @ 80:c4a3a8999945 draft
Uploaded
author | bernhardlutz |
---|---|
date | Mon, 20 Jan 2014 14:39:43 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python #from galaxy import eggs import sys, string #from rpy import * import rpy2.robjects as robjects import rpy2.rlike.container as rlc r = robjects.r import numpy #export PYTHONPATH=~/galaxy/lib/ #running command python partialR_square.py reg_inp.tab 4 1,2,3 partialR_result.tabular def stop_err(msg): sys.stderr.write(msg) sys.exit() def sscombs(s): if len(s) == 1: return [s] else: ssc = sscombs(s[1:]) return [s[0]] + [s[0]+comb for comb in ssc] + ssc infile = sys.argv[1] y_col = int(sys.argv[2])-1 x_cols = sys.argv[3].split(',') outfile = sys.argv[4] print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) fout = open(outfile,'w') for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) y_vals = [] x_vals = [] x_vector = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) """ try: float( elems[x_cols[k]] ) except: try: msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] ) except: msg = "This operation cannot be performed on non-numeric data." stop_err( msg ) """ NA = 'NA' for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.split("\t") try: yval = float(fields[y_col]) except Exception, ey: yval = r('NA') #print >>sys.stderr, "ey = %s" %ey y_vals.append(yval) for k,col in enumerate(x_cols): try: xval = float(fields[col]) except Exception, ex: xval = r('NA') #print >>sys.stderr, "ex = %s" %ex x_vals[k].append(xval) x_vector.append(xval) except: pass #x_vals1 = numpy.asarray(x_vals).transpose() #dat= r.list(x=array(x_vals1), y=y_vals) #set_default_mode(NO_CONVERSION) #try: # full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user #except RException, rex: # stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") #set_default_mode(BASIC_CONVERSION) fv = robjects.FloatVector(x_vector) m = r['matrix'](fv, ncol=len(x_cols),byrow=True) # ensure order for generating formula od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) dat = robjects.DataFrame(od) # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' formula = ' + '.join(dat.names).replace('+','~',1) try: full = r.lm(formula, data = r['na.exclude'](dat)) except RException, rex: stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") summary = r.summary(full) #fullr2 = summary.get('r.squared','NA') fullr2 = summary.rx2('r.squared')[0] if fullr2 == 'NA': stop_error("Error in linear regression") if len(x_vals) < 10: s = "" for ch in range(len(x_vals)): s += str(ch) else: stop_err("This tool only works with less than 10 predictors.") print >>fout, "#Model\tR-sq\tpartial_R_Terms\tpartial_R_Value" all_combos = sorted(sscombs(s), key=len) all_combos.reverse() for j,cols in enumerate(all_combos): #if len(cols) == len(s): #Same as the full model above # continue if len(cols) == 1: #x_vals1 = x_vals[int(cols)] x_v = x_vals[int(cols)] else: x_v = [] for col in cols: #x_v.append(x_vals[int(col)]) x_v.extend(x_vals[int(col)]) #x_vals1 = numpy.asarray(x_v).transpose() #dat= r.list(x=array(x_vals1), y=y_vals) #set_default_mode(NO_CONVERSION) #red = r.lm(r("y ~ x"), data= dat) #Reduced model #set_default_mode(BASIC_CONVERSION) fv = robjects.FloatVector(x_v) m = r['matrix'](fv, ncol=len(cols),byrow=False) # ensure order for generating formula od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) dat = robjects.DataFrame(od) # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' formula = ' + '.join(dat.names).replace('+','~',1) try: red = r.lm(formula, data = r['na.exclude'](dat)) except RException, rex: stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") summary = r.summary(red) #redr2 = summary.get('r.squared','NA') redr2 = summary.rx2('r.squared')[0] try: partial_R = (float(fullr2)-float(redr2))/(1-float(redr2)) except: partial_R = 'NA' col_str = "" for col in cols: col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " col_str.strip() partial_R_col_str = "" for col in s: if col not in cols: partial_R_col_str = partial_R_col_str + str(int(x_cols[int(col)]) + 1) + " " partial_R_col_str.strip() if len(cols) == len(s): #full model partial_R_col_str = "-" partial_R = "-" try: redr2 = "%.4f" %(float(redr2)) except: pass try: partial_R = "%.4f" %(float(partial_R)) except: pass print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,partial_R_col_str,partial_R)