80
|
1 #!/usr/bin/env python
|
|
2
|
|
3 #from galaxy import eggs
|
|
4 import sys, string
|
|
5 #from rpy import *
|
|
6 import rpy2.robjects as robjects
|
|
7 import rpy2.rlike.container as rlc
|
|
8 import rpy2.rinterface as ri
|
|
9 r = robjects.r
|
|
10 import numpy
|
|
11
|
|
12 def stop_err(msg):
|
|
13 sys.stderr.write(msg)
|
|
14 sys.exit()
|
|
15
|
|
16 infile = sys.argv[1]
|
|
17 y_col = int(sys.argv[2])-1
|
|
18 x_cols = sys.argv[3].split(',')
|
|
19 outfile = sys.argv[4]
|
|
20
|
|
21
|
|
22 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
|
|
23 fout = open(outfile,'w')
|
|
24 elems = []
|
|
25 for i, line in enumerate( file ( infile )):
|
|
26 line = line.rstrip('\r\n')
|
|
27 if len( line )>0 and not line.startswith( '#' ):
|
|
28 elems = line.split( '\t' )
|
|
29 break
|
|
30 if i == 30:
|
|
31 break # Hopefully we'll never get here...
|
|
32
|
|
33 if len( elems )<1:
|
|
34 stop_err( "The data in your input dataset is either missing or not formatted properly." )
|
|
35
|
|
36 y_vals = []
|
|
37 x_vals = []
|
|
38 x_vector = []
|
|
39 for k,col in enumerate(x_cols):
|
|
40 x_cols[k] = int(col)-1
|
|
41 x_vals.append([])
|
|
42
|
|
43 NA = 'NA'
|
|
44 for ind,line in enumerate( file( infile )):
|
|
45 if line and not line.startswith( '#' ):
|
|
46 try:
|
|
47 fields = line.split("\t")
|
|
48 try:
|
|
49 yval = float(fields[y_col])
|
|
50 except:
|
|
51 yval = r('NA')
|
|
52 y_vals.append(yval)
|
|
53 for k,col in enumerate(x_cols):
|
|
54 try:
|
|
55 xval = float(fields[col])
|
|
56 except:
|
|
57 xval = r('NA')
|
|
58 x_vals[k].append(xval)
|
|
59 x_vector.append(xval)
|
|
60 except Exception, e:
|
|
61 print e
|
|
62 pass
|
|
63
|
|
64 #x_vals1 = numpy.asarray(x_vals).transpose()
|
|
65
|
|
66 check1=0
|
|
67 check0=0
|
|
68 for i in y_vals:
|
|
69 if i == 1:
|
|
70 check1=1
|
|
71 if i == 0:
|
|
72 check0=1
|
|
73 if check1==0 or check0==0:
|
|
74 sys.exit("Warning: logistic regression must have at least two classes")
|
|
75
|
|
76 for i in y_vals:
|
|
77 if i not in [1,0,r('NA')]:
|
|
78 print >>fout, str(i)
|
|
79 sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.")
|
|
80
|
|
81
|
|
82 #dat= r.list(x=array(x_vals1), y=y_vals)
|
|
83 novif=0
|
|
84 #set_default_mode(NO_CONVERSION)
|
|
85 #try:
|
|
86 # linear_model = r.glm(r("y ~ x"), data = r.na_exclude(dat),family="binomial")
|
|
87 # #r('library(car)')
|
|
88 # #r.assign('dat',dat)
|
|
89 # #r.assign('ncols',len(x_cols))
|
|
90 # #r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')).as_py()
|
|
91 #
|
|
92 #except RException, rex:
|
|
93 # stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
|
|
94
|
|
95 fv = robjects.FloatVector(x_vector)
|
|
96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
|
|
97 # ensure order for generating formula
|
|
98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
|
|
99 dat = robjects.DataFrame(od)
|
|
100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
|
|
101 formula = ' + '.join(dat.names).replace('+','~',1)
|
|
102 print formula
|
|
103 try:
|
|
104 linear_model = r.glm(formula, data = r['na.exclude'](dat), family="binomial")
|
|
105 except Exception, rex:
|
|
106 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
|
|
107
|
|
108 if len(x_cols)>1:
|
|
109 try:
|
|
110 r('library(car)')
|
|
111 r.assign('dat',dat)
|
|
112 r.assign('ncols',len(x_cols))
|
|
113 #vif=r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")'))
|
|
114 od2 = rlc.OrdDict([('datx', m)])
|
|
115 glm_data_frame = robjects.DataFrame(od2)
|
|
116 glm_result = r.glm("dat$y ~ .", data = r['na.exclude'](glm_data_frame),family="binomial")
|
|
117 print 'Have glm'
|
|
118 vif = r.vif(glm_result)
|
|
119 except Exception, rex:
|
|
120 print rex
|
|
121 else:
|
|
122 novif=1
|
|
123
|
|
124 #set_default_mode(BASIC_CONVERSION)
|
|
125
|
|
126 #coeffs=linear_model.as_py()['coefficients']
|
|
127 coeffs=linear_model.rx2('coefficients')
|
|
128 #null_deviance=linear_model.as_py()['null.deviance']
|
|
129 null_deviance=linear_model.rx2('null.deviance')[0]
|
|
130 #residual_deviance=linear_model.as_py()['deviance']
|
|
131 residual_deviance=linear_model.rx2('deviance')[0]
|
|
132 #yintercept= coeffs['(Intercept)']
|
|
133 yintercept= coeffs.rx2('(Intercept)')[0]
|
|
134
|
|
135 summary = r.summary(linear_model)
|
|
136 #co = summary.get('coefficients', 'NA')
|
|
137 co = summary.rx2("coefficients")
|
|
138 print co
|
|
139 """
|
|
140 if len(co) != len(x_vals)+1:
|
|
141 stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.")
|
|
142 """
|
|
143
|
|
144 try:
|
|
145 yintercept = r.round(float(yintercept), digits=10)[0]
|
|
146 #pvaly = r.round(float(co[0][3]), digits=10)
|
|
147 pvaly = r.round(float(co.rx(1,4)[0]), digits=10)[0]
|
|
148 except Exception, e:
|
|
149 print str(e)
|
|
150 pass
|
|
151 print >>fout, "response column\tc%d" %(y_col+1)
|
|
152 tempP=[]
|
|
153 for i in x_cols:
|
|
154 tempP.append('c'+str(i+1))
|
|
155 tempP=','.join(tempP)
|
|
156 print >>fout, "predictor column(s)\t%s" %(tempP)
|
|
157 print >>fout, "Y-intercept\t%s" %(yintercept)
|
|
158 print >>fout, "p-value (Y-intercept)\t%s" %(pvaly)
|
|
159
|
|
160 print coeffs
|
|
161 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable
|
|
162 try:
|
|
163 #slope = r.round(float(coeffs['x']), digits=10)
|
|
164 raw_slope = coeffs.rx2('x')[0]
|
|
165 slope = r.round(float(raw_slope), digits=10)[0]
|
|
166 except:
|
|
167 slope = 'NA'
|
|
168 try:
|
|
169 #pval = r.round(float(co[1][3]), digits=10)
|
|
170 pval = r.round(float(co.rx2(2,4)[0]), digits=10)[0]
|
|
171 except:
|
|
172 pval = 'NA'
|
|
173 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope)
|
|
174 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval)
|
|
175 else: #Multiple regression case with >1 predictors
|
|
176 ind=1
|
|
177 #while ind < len(coeffs.keys()):
|
|
178 print len(coeffs.names)
|
|
179 while ind < len(coeffs.names):
|
|
180 try:
|
|
181 #slope = r.round(float(coeffs['x'+str(ind)]), digits=10)
|
|
182 raw_slope = coeffs.rx2('x.' + str(ind))[0]
|
|
183 slope = r.round(float(raw_slope), digits=10)[0]
|
|
184 except:
|
|
185 slope = 'NA'
|
|
186 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope)
|
|
187
|
|
188 try:
|
|
189 #pval = r.round(float(co[ind][3]), digits=10)
|
|
190 pval = r.round(float(co.rx2(ind+1, 4)[0]), digits=10)[0]
|
|
191 except:
|
|
192 pval = 'NA'
|
|
193 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval)
|
|
194 ind+=1
|
|
195
|
|
196 #rsq = summary.get('r.squared','NA')
|
|
197 rsq = summary.rx2('r.squared')
|
|
198 if rsq == ri.RNULLType():
|
|
199 rsq = 'NA'
|
|
200 else:
|
|
201 rsq = rsq[0]
|
|
202
|
|
203
|
|
204 try:
|
|
205 #rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)
|
|
206 rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)[0]
|
|
207 #null_deviance= r.round(float(null_deviance), digits=5)
|
|
208 null_deviance= r.round(float(null_deviance), digits=5)[0]
|
|
209 #residual_deviance= r.round(float(residual_deviance), digits=5)
|
|
210 residual_deviance= r.round(float(residual_deviance), digits=5)[0]
|
|
211
|
|
212 except:
|
|
213 pass
|
|
214
|
|
215 print >>fout, "Null deviance\t%s" %(null_deviance)
|
|
216
|
|
217 print >>fout, "Residual deviance\t%s" %(residual_deviance)
|
|
218 print >>fout, "pseudo R-squared\t%s" %(rsq)
|
|
219 print >>fout, "\n"
|
|
220 print >>fout, 'vif'
|
|
221
|
|
222 if novif==0:
|
|
223 #py_vif=vif.as_py()
|
|
224 count=0
|
|
225 for i in sorted(vif.names):
|
|
226 print >>fout,'c'+str(x_cols[count]+1) ,str(vif.rx2(i)[0])
|
|
227 count+=1
|
|
228 elif novif==1:
|
|
229 print >>fout, "vif can calculate only when model have more than 1 predictor"
|