Mercurial > repos > bgruening > upload_testing
view logistic_regression_vif.py @ 80:c4a3a8999945 draft
Uploaded
author | bernhardlutz |
---|---|
date | Mon, 20 Jan 2014 14:39:43 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python #from galaxy import eggs import sys, string #from rpy import * import rpy2.robjects as robjects import rpy2.rlike.container as rlc import rpy2.rinterface as ri r = robjects.r import numpy def stop_err(msg): sys.stderr.write(msg) sys.exit() infile = sys.argv[1] y_col = int(sys.argv[2])-1 x_cols = sys.argv[3].split(',') outfile = sys.argv[4] print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) fout = open(outfile,'w') elems = [] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) y_vals = [] x_vals = [] x_vector = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) NA = 'NA' for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.split("\t") try: yval = float(fields[y_col]) except: yval = r('NA') y_vals.append(yval) for k,col in enumerate(x_cols): try: xval = float(fields[col]) except: xval = r('NA') x_vals[k].append(xval) x_vector.append(xval) except Exception, e: print e pass #x_vals1 = numpy.asarray(x_vals).transpose() check1=0 check0=0 for i in y_vals: if i == 1: check1=1 if i == 0: check0=1 if check1==0 or check0==0: sys.exit("Warning: logistic regression must have at least two classes") for i in y_vals: if i not in [1,0,r('NA')]: print >>fout, str(i) sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") #dat= r.list(x=array(x_vals1), y=y_vals) novif=0 #set_default_mode(NO_CONVERSION) #try: # linear_model = r.glm(r("y ~ x"), data = r.na_exclude(dat),family="binomial") # #r('library(car)') # #r.assign('dat',dat) # #r.assign('ncols',len(x_cols)) # #r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')).as_py() # #except RException, rex: # stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") fv = robjects.FloatVector(x_vector) m = r['matrix'](fv, ncol=len(x_cols),byrow=True) # ensure order for generating formula od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) dat = robjects.DataFrame(od) # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' formula = ' + '.join(dat.names).replace('+','~',1) print formula try: linear_model = r.glm(formula, data = r['na.exclude'](dat), family="binomial") except Exception, rex: stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") if len(x_cols)>1: try: r('library(car)') r.assign('dat',dat) r.assign('ncols',len(x_cols)) #vif=r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')) od2 = rlc.OrdDict([('datx', m)]) glm_data_frame = robjects.DataFrame(od2) glm_result = r.glm("dat$y ~ .", data = r['na.exclude'](glm_data_frame),family="binomial") print 'Have glm' vif = r.vif(glm_result) except Exception, rex: print rex else: novif=1 #set_default_mode(BASIC_CONVERSION) #coeffs=linear_model.as_py()['coefficients'] coeffs=linear_model.rx2('coefficients') #null_deviance=linear_model.as_py()['null.deviance'] null_deviance=linear_model.rx2('null.deviance')[0] #residual_deviance=linear_model.as_py()['deviance'] residual_deviance=linear_model.rx2('deviance')[0] #yintercept= coeffs['(Intercept)'] yintercept= coeffs.rx2('(Intercept)')[0] summary = r.summary(linear_model) #co = summary.get('coefficients', 'NA') co = summary.rx2("coefficients") print co """ if len(co) != len(x_vals)+1: stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") """ try: yintercept = r.round(float(yintercept), digits=10)[0] #pvaly = r.round(float(co[0][3]), digits=10) pvaly = r.round(float(co.rx(1,4)[0]), digits=10)[0] except Exception, e: print str(e) pass print >>fout, "response column\tc%d" %(y_col+1) tempP=[] for i in x_cols: tempP.append('c'+str(i+1)) tempP=','.join(tempP) print >>fout, "predictor column(s)\t%s" %(tempP) print >>fout, "Y-intercept\t%s" %(yintercept) print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) print coeffs if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable try: #slope = r.round(float(coeffs['x']), digits=10) raw_slope = coeffs.rx2('x')[0] slope = r.round(float(raw_slope), digits=10)[0] except: slope = 'NA' try: #pval = r.round(float(co[1][3]), digits=10) pval = r.round(float(co.rx2(2,4)[0]), digits=10)[0] except: pval = 'NA' print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) else: #Multiple regression case with >1 predictors ind=1 #while ind < len(coeffs.keys()): print len(coeffs.names) while ind < len(coeffs.names): try: #slope = r.round(float(coeffs['x'+str(ind)]), digits=10) raw_slope = coeffs.rx2('x.' + str(ind))[0] slope = r.round(float(raw_slope), digits=10)[0] except: slope = 'NA' print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) try: #pval = r.round(float(co[ind][3]), digits=10) pval = r.round(float(co.rx2(ind+1, 4)[0]), digits=10)[0] except: pval = 'NA' print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) ind+=1 #rsq = summary.get('r.squared','NA') rsq = summary.rx2('r.squared') if rsq == ri.RNULLType(): rsq = 'NA' else: rsq = rsq[0] try: #rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)[0] #null_deviance= r.round(float(null_deviance), digits=5) null_deviance= r.round(float(null_deviance), digits=5)[0] #residual_deviance= r.round(float(residual_deviance), digits=5) residual_deviance= r.round(float(residual_deviance), digits=5)[0] except: pass print >>fout, "Null deviance\t%s" %(null_deviance) print >>fout, "Residual deviance\t%s" %(residual_deviance) print >>fout, "pseudo R-squared\t%s" %(rsq) print >>fout, "\n" print >>fout, 'vif' if novif==0: #py_vif=vif.as_py() count=0 for i in sorted(vif.names): print >>fout,'c'+str(x_cols[count]+1) ,str(vif.rx2(i)[0]) count+=1 elif novif==1: print >>fout, "vif can calculate only when model have more than 1 predictor"