Mercurial > repos > bgruening > flexynesis
diff flexynesis_utils.py @ 3:525c661a7fdc draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/flexynesis commit b2463fb68d0ae54864d87718ee72f5e063aa4587
author | bgruening |
---|---|
date | Tue, 24 Jun 2025 05:55:40 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/flexynesis_utils.py Tue Jun 24 05:55:40 2025 +0000 @@ -0,0 +1,257 @@ +#!/usr/bin/env python + +import argparse +import os +import sys +from pathlib import Path + +import pandas as pd + + +def read_data(data_input, index=False): + """Load CSV or TSV data file.""" + try: + file_ext = Path(data_input).suffix.lower() + sep = ',' if file_ext == '.csv' else '\t' + index_col = 0 if index else None + + if file_ext in ['.csv', '.tsv', '.txt', '.tab', '.tabular']: + return pd.read_csv(data_input, sep=sep, index_col=index_col) + else: + raise ValueError(f"Unsupported file extension: {file_ext}") + except Exception as e: + raise ValueError(f"Error loading data from {data_input}: {e}") from e + + +def binarize_mutations(df, gene_idx=1, sample_idx=2): + """ + Binarize mutation data by creating a matrix of gene x sample with 1/0 values. + """ + # galaxy index is 1-based, convert to zero-based + gene_idx -= 1 + sample_idx -= 1 + # check idx + if gene_idx >= len(df.columns) or sample_idx >= len(df.columns): + raise ValueError(f"Column indices out of bounds. DataFrame has {len(df.columns)} columns, " + f"but requested indices are {gene_idx} and {sample_idx}") + if gene_idx == sample_idx: + raise ValueError("Gene and sample column indices must be different") + + # Get column names by index + gene_col = df.columns[gene_idx] + print(f"Using gene column: {gene_col} (index {gene_idx})") + sample_col = df.columns[sample_idx] + print(f"Using sample column: {sample_col} (index {sample_idx})") + + # Check if columns contain data + if df[gene_col].isna().all(): + raise ValueError(f"Gene column (index {gene_idx}) contains only NaN values.") + if df[sample_col].isna().all(): + raise ValueError(f"Sample column (index {sample_idx}) contains only NaN values.") + + # Group by gene and sample, count mutations + mutation_counts = df.groupby([gene_col, sample_col]).size().reset_index(name='count') + + # Create pivot table + mutation_matrix = mutation_counts.pivot(index=gene_col, columns=sample_col, values='count').fillna(0) + + # Binarize: convert any count > 0 to 1 + mutation_matrix[mutation_matrix > 0] = 1 + + return mutation_matrix + + +def make_data_dict(clin_path, omics_paths): + """Read clinical and omics data files into a dictionary.""" + data = {} + + # Read clinical data + print(f"Reading clinical data from {clin_path}") + try: + clin = read_data(clin_path, index=True) + + if clin.empty: + raise ValueError(f"Clinical file {clin_path} is empty") + data['clin'] = clin + print(f"Loaded clinical data: {clin.shape[0]} samples, {clin.shape[1]} features") + except Exception as e: + raise ValueError(f"Error reading clinical file {clin_path}: {e}") + + # Read omics data + print(f"Reading omics data from {', '.join(omics_paths)}") + for path in omics_paths: + try: + name = os.path.splitext(os.path.basename(path))[0] + df = read_data(path, index=True) + if df.empty: + print(f"Warning: Omics file {path} is empty, skipping") + continue + data[name] = df + print(f"Loaded {name}: {df.shape[0]} features, {df.shape[1]} samples") + except Exception as e: + print(f"Warning: Error reading omics file {path}: {e}") + continue + + if len(data) == 1: # Only clinical data loaded + raise ValueError("No omics data was successfully loaded") + + return data + + +def validate_data_consistency(data): + """Validate that clinical and omics data have consistent samples.""" + clin_samples = set(data['clin'].index) + + for name, df in data.items(): + if name == 'clin': + continue + + omics_samples = set(df.columns) + + # Check for sample overlap + common_samples = clin_samples.intersection(omics_samples) + if len(common_samples) == 0: + raise ValueError(f"No common samples between clinical data and {name}") + + missing_in_omics = clin_samples - omics_samples + missing_in_clin = omics_samples - clin_samples + + if missing_in_omics: + print(f"Warning: {len(missing_in_omics)} clinical samples not found in {name}") + if missing_in_clin: + print(f"Warning: {len(missing_in_clin)} samples in {name} not found in clinical data") + + return True + + +def split_and_save_data(data, ratio=0.7, output_dir='.'): + """Split data into train/test sets and save to files.""" + # Validate data consistency first + validate_data_consistency(data) + + samples = data['clin'].index.tolist() + + train_samples = list(pd.Series(samples).sample(frac=ratio, random_state=42)) + test_samples = list(set(samples) - set(train_samples)) + + train_data = {} + test_data = {} + + for key, df in data.items(): + try: + if key == 'clin': + train_data[key] = df.loc[df.index.intersection(train_samples)] + test_data[key] = df.loc[df.index.intersection(test_samples)] + else: + train_data[key] = df.loc[:, df.columns.intersection(train_samples)] + test_data[key] = df.loc[:, df.columns.intersection(test_samples)] + except Exception as e: + print(f"Error splitting data {key}: {e}") + continue + + # Create output directories + os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True) + os.makedirs(os.path.join(output_dir, 'test'), exist_ok=True) + + # Save train and test data + for key in data.keys(): + try: + train_data[key].to_csv(os.path.join(output_dir, 'train', f'{key}.csv')) + test_data[key].to_csv(os.path.join(output_dir, 'test', f'{key}.csv')) + except Exception as e: + print(f"Error saving {key}: {e}") + continue + + +def main(): + parser = argparse.ArgumentParser(description='Flexynesis extra utilities') + + parser.add_argument("--util", type=str, required=True, + choices=['split', 'binarize'], + help="Utility function: 'split' for spiting data to train and test, 'binarize' for creating a binarized matrix from a mutation data") + + # Arguments for split + parser.add_argument('--clin', required=False, + help='Path to clinical data CSV file (samples in rows)') + parser.add_argument('--omics', required=False, + help='Comma-separated list of omics CSV files (samples in columns)') + parser.add_argument('--split', type=float, default=0.7, + help='Train split ratio (default: 0.7)') + + # Arguments for binarize + parser.add_argument('--mutations', type=str, required=False, + help='Path to mutation data CSV file (samples in rows, genes in columns)') + parser.add_argument('--gene_idx', type=int, default=0, + help='Column index for genes in mutation data (default: 0)') + parser.add_argument('--sample_idx', type=int, default=1, + help='Column index for samples in mutation data (default: 1)') + + # common arguments + parser.add_argument('--out', default='.', + help='Output directory (default: current directory)') + + args = parser.parse_args() + + try: + # validate utility function + if not args.util: + raise ValueError("Utility function must be specified") + if args.util not in ['split', 'binarize']: + raise ValueError(f"Invalid utility function: {args.util}") + + if args.util == 'split': + # Validate inputs + if not args.clin: + raise ValueError("Clinical data file must be provided") + if not args.omics: + raise ValueError("At least one omics file must be provided") + if not os.path.isfile(args.clin): + raise FileNotFoundError(f"Clinical file not found: {args.clin}") + # Validate split ratio + if not 0 < args.split < 1: + raise ValueError(f"Split ratio must be between 0 and 1, got {args.split}") + + elif args.util == 'binarize': + # Validate mutation data file + if not args.mutations: + raise ValueError("Mutation data file must be provided") + if not os.path.isfile(args.mutations): + raise FileNotFoundError(f"Mutation data file not found: {args.mutations}") + # Validate gene and sample indices + if args.gene_idx < 0 or args.sample_idx < 0: + raise ValueError("Gene and sample indices must be non-negative integers") + + # Create output directory if it doesn't exist + if not os.path.exists(args.out): + os.makedirs(args.out) + + if args.util == 'split': + # Parse omics files + omics_files = [f.strip() for f in args.omics.split(',') if f.strip()] + if not omics_files: + raise ValueError("At least one omics file must be provided") + # Check omics files exist + for f in omics_files: + if not os.path.isfile(f): + raise FileNotFoundError(f"Omics file not found: {f}") + data = make_data_dict(args.clin, omics_files) + split_and_save_data(data, ratio=args.split, output_dir=args.out) + + elif args.util == 'binarize': + mutations_df = read_data(args.mutations, index=False) + if mutations_df.empty: + raise ValueError("Mutation data file is empty") + + binarized_matrix = binarize_mutations(mutations_df, gene_idx=args.gene_idx, sample_idx=args.sample_idx) + # Save binarized matrix + output_file = os.path.join(args.out, 'binarized_mutations.csv') + binarized_matrix.to_csv(output_file) + print(f"Binarized mutation matrix saved to {output_file}") + + except Exception as e: + print(f"Error: {e}", file=sys.stderr) + sys.exit(1) + + +if __name__ == "__main__": + main()