Mercurial > repos > bgruening > eden_toolbox
view EDeN_test.xml @ 6:7d49e315cb95 draft
Uploaded
author | bgruening |
---|---|
date | Thu, 05 Sep 2013 12:52:45 -0400 |
parents | a3edc97e056c |
children | 59b3b6ce10bb |
line wrap: on
line source
<tool id="bg_eden_test" name="EDeN Test" version="0.1"> <description></description> <requirements> </requirements> <command> EDeN --action TEST --input_data_file_name $sparse_vector_infile --model_file_name $model_infile --file_type "SPARSE_VECTOR" --binary_file_type </command> <inputs> <param format="eden_sparse_vector" name="sparse_vector_infile" type="data" label="Input File" help=""/> <param format="txt" name="model_infile" type="data" label="Input Model" help="created with the EDeN Train program"/> </inputs> <outputs> <data format="tabular" name="output" label="Generated from ${on_string}"/> </outputs> <tests> <test> </test> </tests> <help> .. class:: infomark **What it does** The linear model is induced using the accelerated stochastic gradient descent technique by Léon Bottou and Yann LeCun. When the target information is 0, a self-training algorithm is used to impute a positive or negative class to the unsupervised instances. If the target information is imbalanced a minority class resampling technique is used to rebalance the training set. This tool is part of the EDeN (Explicit Decomposition with Neighborhoods) suite, developed by Fabrizio Costa. </help> </tool>