Mercurial > repos > bgruening > eden_toolbox
view EDeN_test.xml @ 7:59b3b6ce10bb draft
Uploaded
author | bgruening |
---|---|
date | Tue, 29 Oct 2013 11:07:49 -0400 |
parents | a3edc97e056c |
children | 9262f801d739 |
line wrap: on
line source
<tool id="bg_eden_test" name="EDeN Test" version="0.1"> <description></description> <macros> <import>eden_macros.xml</import> </macros> <expand macro="requirements" /> <command> tmp_dir=`mktemp -d -u`; EDeN --action TEST --input_data_file_name $sparse_vector_infile --file_type "SPARSE_VECTOR" --binary_file_type --model_file_name $model_infile @kernel_type_options@ --graph_type $graph_type @normalization_kernel_hash_radius_dist_vertex@ --output_directory_path \$tmp_dir --minimal_output ; cp \$tmp_dir/prediction $output; rm \$tmp_dir -rf </command> <inputs> <param format="eden_sparse_vector" name="sparse_vector_infile" type="data" label="Input File" help=""/> <param format="txt" name="model_infile" type="data" label="Input Model" help="created with the EDeN Train program"/> <expand macro="kernel_type_options" /> <expand macro="graph_types" /> <expand macro="normalization_kernel_hash_radius_dist_vertex" /> </inputs> <outputs> <data format="tabular" name="output" label="Generated from ${on_string}"/> </outputs> <tests> <test> </test> </tests> <help> .. class:: infomark **What it does** The linear model is induced using the accelerated stochastic gradient descent technique by Léon Bottou and Yann LeCun. When the target information is 0, a self-training algorithm is used to impute a positive or negative class to the unsupervised instances. If the target information is imbalanced a minority class resampling technique is used to rebalance the training set. @references@ </help> </tool>