Mercurial > repos > zzhou > spp_phantompeak
view spp/man/spp-package.Rd @ 15:e689b83b0257 draft
Uploaded
author | zzhou |
---|---|
date | Tue, 27 Nov 2012 16:15:21 -0500 |
parents | ce08b0efa3fd |
children |
line wrap: on
line source
\name{spp-package} \alias{spp-package} \alias{spp} \docType{package} \title{ ChIP-seq (Solexa) Processing Pipeline } \description{ A set of routines for reading short sequence alignments, calculating tag density, estimates of statistically significant enrichment/depletion along the chromosome, identifying point binding positions (peaks), and characterizing saturation properties related to sequencing depth. } \details{ \tabular{ll}{ Package: \tab spp\cr Type: \tab Package\cr Version: \tab 1.8\cr Date: \tab 2008-11-14\cr License: \tab What license is it under?\cr LazyLoad: \tab yes\cr } See example below for typical processing sequence.y } \author{Peter Kharchenko <peter.kharchenko@post.harvard.edu>} \references{ Kharchenko P., Tolstorukov M., Park P. "Design and analysis of ChIP-seq experiments for DNA-binding proteins." Nature Biotech. doi:10.1038/nbt.1508 } \examples{ # load the library library(spp); ## The following section shows how to initialize a cluster of 8 nodes for parallel processing ## To enable parallel processing, uncomment the next three lines, and comment out "cluster<-NULL"; ## see "snow" package manual for details. #library(snow) #cluster <- makeCluster(2); #invisible(clusterCall(cluster,source,"routines.r")); cluster <- NULL; # read in tag alignments chip.data <- read.eland.tags("chip.eland.alignment"); input.data <- read.eland.tags("input.eland.alignment"); # get binding info from cross-correlation profile # srange gives the possible range for the size of the protected region; # srange should be higher than tag length; making the upper boundary too high will increase calculation time # # bin - bin tags within the specified number of basepairs to speed up calculation; # increasing bin size decreases the accuracy of the determined parameters binding.characteristics <- get.binding.characteristics(chip.data,srange=c(50,500),bin=5,cluster=cluster); # plot cross-correlation profile pdf(file="example.crosscorrelation.pdf",width=5,height=5) par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8); plot(binding.characteristics$cross.correlation,type='l',xlab="strand shift",ylab="cross-correlation"); abline(v=binding.characteristics$peak$x,lty=2,col=2) dev.off(); # select informative tags based on the binding characteristics chip.data <- select.informative.tags(chip.data,binding.characteristics); input.data <- select.informative.tags(input.data,binding.characteristics); # restrict or remove positions with anomalous number of tags relative # to the local density chip.data <- remove.local.tag.anomalies(chip.data); input.data <- remove.local.tag.anomalies(input.data); # output smoothed tag density (subtracting re-scaled input) into a WIG file # note that the tags are shifted by half of the peak separation distance smoothed.density <- get.smoothed.tag.density(chip.data,control.tags=input.data,bandwidth=200,step=100,tag.shift=round(binding.characteristics$peak$x/2)); writewig(smoothed.density,"example.density.wig","Example smoothed, background-subtracted tag density"); rm(smoothed.density); # output conservative enrichment estimates # alpha specifies significance level at which confidence intervals will be estimated enrichment.estimates <- get.conservative.fold.enrichment.profile(chip.data,input.data,fws=2*binding.characteristics$whs,step=100,alpha=0.01); writewig(enrichment.estimates,"example.enrichment.estimates.wig","Example conservative fold-enrichment/depletion estimates shown on log2 scale"); rm(enrichment.estimates); # binding detection parameters # desired FDR. Alternatively, an E-value can be supplied to the method calls below instead of the fdr parameter fdr <- 1e-2; # the binding.characteristics contains the optimized half-size for binding detection window detection.window.halfsize <- binding.characteristics$whs; # determine binding positions using wtd method bp <- find.binding.positions(signal.data=chip.data,control.data=input.data,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize,cluster=cluster) # alternatively determined binding positions using lwcc method (note: this takes longer than wtd) # bp <- find.binding.positions(signal.data=chip.data,control.data=input.data,fdr=fdr,method=tag.lwcc,whs=detection.window.halfsize,cluster=cluster) print(paste("detected",sum(unlist(lapply(bp$npl,function(d) length(d$x)))),"peaks")); # output detected binding positions output.binding.results(bp,"example.binding.positions.txt"); # ------------------------------------------------------------------------------------------- # the set of commands in the following section illustrates methods for saturation analysis # these are separated from the previous section, since they are highly CPU intensive # ------------------------------------------------------------------------------------------- # determine MSER # note: this will take approximately 10-15x the amount of time the initial binding detection did # The saturation criteria here is 0.99 consistency in the set of binding positions when adding 1e5 tags. # To ensure convergence the number of subsampled chains (n.chains) should be higher (80) mser <- get.mser(chip.data,input.data,step.size=1e5,test.agreement=0.99,n.chains=8,cluster=cluster,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize) print(paste("MSER at a current depth is",mser)); # note: an MSER value of 1 or very near one implies that the set of detected binding positions satisfies saturation criteria without # additional selection by fold-enrichment ratios. In other words, the dataset has reached saturation in a traditional sense (absolute saturation). # interpolate MSER dependency on tag count # note: this requires considerably more calculations than the previous steps (~ 3x more than the first MSER calculation) # Here we interpolate MSER dependency to determine a point at which MSER of 2 is reached # The interpolation will be based on the difference in MSER at the current depth, and a depth at 5e5 fewer tags (n.steps=6); # evaluation of the intermediate points is omitted here to speed up the calculation (excluded.steps parameter) # A total of 7 chains is used here to speed up calculation, whereas a higher number of chains (50) would give good convergence msers <- get.mser.interpolation(chip.data,input.data,step.size=1e5,test.agreement=0.99, target.fold.enrichment=2, n.chains=7,n.steps=6,excluded.steps=c(2:4),cluster=cluster,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize) print(paste("predicted sequencing depth =",round(unlist(lapply(msers,function(x) x$prediction))/1e6,5)," million tags")) # note: the interpolation will return NA prediction if the dataset has reached absolute saturation at the current depth. # note: use return.chains=T to also calculated random chains (returned under msers$chains field) - these can be passed back as # "get.mser.interpolation( ..., chains=msers$chains)" to calculate predictions for another target.fold.enrichment value # without having to recalculate the random chain predictions. ## stop cluster if it was initialized #stopCluster(cluster); }