diff spp/man/spp-package.Rd @ 6:ce08b0efa3fd draft

Uploaded
author zzhou
date Tue, 27 Nov 2012 16:11:40 -0500
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spp/man/spp-package.Rd	Tue Nov 27 16:11:40 2012 -0500
@@ -0,0 +1,144 @@
+\name{spp-package}
+\alias{spp-package}
+\alias{spp}
+\docType{package}
+\title{
+ChIP-seq (Solexa) Processing Pipeline
+}
+\description{
+A set of routines for reading short sequence alignments, calculating tag
+density, estimates of statistically significant enrichment/depletion
+along the chromosome, identifying point binding positions (peaks), and
+characterizing saturation properties related to sequencing depth.
+}
+\details{
+\tabular{ll}{
+Package: \tab spp\cr
+Type: \tab Package\cr
+Version: \tab 1.8\cr
+Date: \tab 2008-11-14\cr
+License: \tab What license is it under?\cr
+LazyLoad: \tab yes\cr
+}
+See example below for typical processing sequence.y
+}
+\author{Peter Kharchenko <peter.kharchenko@post.harvard.edu>}
+\references{
+Kharchenko P., Tolstorukov M., Park P. "Design and analysis of ChIP-seq
+experiments for DNA-binding proteins." Nature Biotech. doi:10.1038/nbt.1508
+}
+
+\examples{
+
+  # load the library
+  library(spp);
+
+  ## The following section shows how to initialize a cluster of 8 nodes for parallel processing
+  ## To enable parallel processing, uncomment the next three lines, and comment out "cluster<-NULL";
+  ## see "snow" package manual for details.
+  #library(snow)
+  #cluster <- makeCluster(2);
+  #invisible(clusterCall(cluster,source,"routines.r"));
+  cluster <- NULL;
+
+
+  
+  # read in tag alignments
+  chip.data <- read.eland.tags("chip.eland.alignment");
+  input.data <- read.eland.tags("input.eland.alignment");
+  
+  # get binding info from cross-correlation profile
+  # srange gives the possible range for the size of the protected region;
+  # srange should be higher than tag length; making the upper boundary too high will increase calculation time
+  #
+  # bin - bin tags within the specified number of basepairs to speed up calculation;
+  # increasing bin size decreases the accuracy of the determined parameters
+  binding.characteristics <- get.binding.characteristics(chip.data,srange=c(50,500),bin=5,cluster=cluster);
+
+
+  # plot cross-correlation profile
+  pdf(file="example.crosscorrelation.pdf",width=5,height=5)
+  par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);
+  plot(binding.characteristics$cross.correlation,type='l',xlab="strand shift",ylab="cross-correlation");
+  abline(v=binding.characteristics$peak$x,lty=2,col=2)
+  dev.off();
+  
+  # select informative tags based on the binding characteristics
+  chip.data <- select.informative.tags(chip.data,binding.characteristics);
+  input.data <- select.informative.tags(input.data,binding.characteristics);
+
+  # restrict or remove positions with anomalous number of tags relative
+  # to the local density
+  chip.data <- remove.local.tag.anomalies(chip.data);
+  input.data <- remove.local.tag.anomalies(input.data);
+
+
+  # output smoothed tag density (subtracting re-scaled input) into a WIG file
+  # note that the tags are shifted by half of the peak separation distance
+  smoothed.density <- get.smoothed.tag.density(chip.data,control.tags=input.data,bandwidth=200,step=100,tag.shift=round(binding.characteristics$peak$x/2));
+  writewig(smoothed.density,"example.density.wig","Example smoothed, background-subtracted tag density");
+  rm(smoothed.density);
+
+  # output conservative enrichment estimates
+  # alpha specifies significance level at which confidence intervals will be estimated
+  enrichment.estimates <- get.conservative.fold.enrichment.profile(chip.data,input.data,fws=2*binding.characteristics$whs,step=100,alpha=0.01);
+  writewig(enrichment.estimates,"example.enrichment.estimates.wig","Example conservative fold-enrichment/depletion estimates shown on log2 scale");
+  rm(enrichment.estimates);
+
+
+  # binding detection parameters
+  # desired FDR. Alternatively, an E-value can be supplied to the method calls below instead of the fdr parameter
+  fdr <- 1e-2; 
+  # the binding.characteristics contains the optimized half-size for binding detection window
+  detection.window.halfsize <- binding.characteristics$whs;
+  
+  # determine binding positions using wtd method
+  bp <- find.binding.positions(signal.data=chip.data,control.data=input.data,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize,cluster=cluster)
+
+  # alternatively determined binding positions using lwcc method (note: this takes longer than wtd)
+  # bp <- find.binding.positions(signal.data=chip.data,control.data=input.data,fdr=fdr,method=tag.lwcc,whs=detection.window.halfsize,cluster=cluster)
+  
+  print(paste("detected",sum(unlist(lapply(bp$npl,function(d) length(d$x)))),"peaks"));
+  
+  # output detected binding positions
+  output.binding.results(bp,"example.binding.positions.txt");
+
+
+  # ------------------------------------------------------------------------------------------- 
+  # the set of commands in the following section illustrates methods for saturation analysis
+  # these are separated from the previous section, since they are highly CPU intensive
+  # ------------------------------------------------------------------------------------------- 
+
+  # determine MSER
+  # note: this will take approximately 10-15x the amount of time the initial binding detection did
+  # The saturation criteria here is 0.99 consistency in the set of binding positions when adding 1e5 tags.
+  # To ensure convergence the number of subsampled chains (n.chains) should be higher (80)
+  mser <- get.mser(chip.data,input.data,step.size=1e5,test.agreement=0.99,n.chains=8,cluster=cluster,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize)
+  
+  print(paste("MSER at a current depth is",mser));
+  
+  # note: an MSER value of 1 or very near one implies that the set of detected binding positions satisfies saturation criteria without
+  # additional selection by fold-enrichment ratios. In other words, the dataset has reached saturation in a traditional sense (absolute saturation).
+
+  # interpolate MSER dependency on tag count
+  # note: this requires considerably more calculations than the previous steps (~ 3x more than the first MSER calculation)
+  # Here we interpolate MSER dependency to determine a point at which MSER of 2 is reached
+  # The interpolation will be based on the difference in MSER at the current depth, and a depth at 5e5 fewer tags (n.steps=6);
+  # evaluation of the intermediate points is omitted here to speed up the calculation (excluded.steps parameter)
+  # A total of 7 chains is used here to speed up calculation, whereas a higher number of chains (50) would give good convergence
+  msers <- get.mser.interpolation(chip.data,input.data,step.size=1e5,test.agreement=0.99, target.fold.enrichment=2, n.chains=7,n.steps=6,excluded.steps=c(2:4),cluster=cluster,fdr=fdr,method=tag.wtd,whs=detection.window.halfsize)
+
+  print(paste("predicted sequencing depth =",round(unlist(lapply(msers,function(x) x$prediction))/1e6,5)," million tags"))
+  
+
+  # note: the interpolation will return NA prediction if the dataset has reached absolute saturation at the current depth.
+  # note: use return.chains=T to also calculated random chains (returned under msers$chains field) - these can be passed back as
+  #       "get.mser.interpolation( ..., chains=msers$chains)" to calculate predictions for another target.fold.enrichment value
+  #        without having to recalculate the random chain predictions.
+
+  ## stop cluster if it was initialized
+  #stopCluster(cluster);  
+
+
+
+}