comparison spp/src/peaks.cpp @ 6:ce08b0efa3fd draft

Uploaded
author zzhou
date Tue, 27 Nov 2012 16:11:40 -0500
parents
children
comparison
equal deleted inserted replaced
5:608a8e0eac56 6:ce08b0efa3fd
1 #include <vector>
2 #include <string.h>
3 #include <iostream>
4 #include <string>
5 #include <set>
6
7 extern "C" {
8 #include "R.h"
9 #include "Rmath.h"
10 #include "Rinternals.h"
11 #include "Rdefines.h"
12 }
13
14 using namespace std;
15 using namespace __gnu_cxx;
16
17 /**
18 * Calculate all local peaks
19 */
20
21 //#define DEBUG 1
22
23 extern "C" {
24 SEXP find_peaks(SEXP x_R,SEXP thr_R,SEXP max_span_R) {
25
26 #ifdef DEBUG
27 Rprintf("start\n");
28 #endif
29 double* x=REAL(x_R);
30 int nx=LENGTH(x_R);
31 int max_span=*INTEGER(max_span_R);
32 double thr=REAL(thr_R)[0];
33 #ifdef DEBUG
34 Rprintf("n=%d; thr=%f; max_span=%d\n",nx,thr,max_span);
35 #endif
36
37 vector<int> pos;
38
39 double pv=x[0];
40 double ppv=0; // previous peak value
41 int ppp=-max_span-1; // previous peak position
42
43 for(int i=1;i<(nx-1);i++) {
44 if(x[i]>pv && x[i]>=thr && x[i]>x[i+1]) {
45 if(max_span>2) {
46 //Rprintf("i=%d; ppp=%d\n",i,ppp);
47 if(i-ppp > max_span) {
48 if(ppp>=0) {
49 pos.push_back(ppp);
50 }
51 //Rprintf("recorded %d; now %d\n",ppp,i);
52 ppp=i; ppv=x[i];
53 } else {
54 if(x[i]>ppv) {
55 //Rprintf("reset from %d to %d\n",ppp,i);
56 ppp=i; ppv=x[i];
57 }
58 }
59 } else {
60 pos.push_back(i);
61 }
62 }
63 if(x[i]!=x[i+1]) { pv=x[i]; }
64 }
65
66 // add remaining peak
67 if(max_span>2 && ppp>=0) {
68 pos.push_back(ppp);
69 }
70
71 SEXP nv;
72 PROTECT(nv=allocVector(INTSXP,pos.size()));
73 int* i_nv=INTEGER(nv);
74 int i=0;
75 for(vector<int> ::const_iterator pi=pos.begin();pi!=pos.end();++pi) {
76 i_nv[i++]=1+(*pi);
77 }
78
79 UNPROTECT(1);
80 return(nv);
81 }
82
83
84
85
86 /************************************************************************/
87 // given a data vector d (positive values) and a set of signed center coordinates pos,
88 // returns coordinates of data points relative to the centers
89 // size is the size of the region around the centers
90 // return: vector of relative coordinates (x) and indecies of centers relative the coordinate
91 // was calculated (i).
92 SEXP get_relative_coordinates(SEXP d_R,
93 SEXP pos_R,
94 SEXP size_R)
95 {
96 int *d, *pos;
97 int npos,nd,size;
98
99 d = INTEGER(d_R); pos = INTEGER(pos_R);
100 npos=LENGTH(pos_R); nd=LENGTH(d_R);
101 size = INTEGER(size_R)[0];
102 #ifdef DEBUG
103 Rprintf("|d|=%d, |c|=%d, size=%d\n",nd,npos,size);
104 #endif
105
106 vector<int> x; vector<int> xi;
107 int k=0; // current pos index
108
109 for(int i=0;i<nd;i++) {
110 // increment k until pos[k]+size>=d[i]
111 while((abs(pos[k])+size) < d[i]) { k++; if(k==npos) { break; };
112 #ifdef DEBUG
113 Rprintf("advancing k to %d\n",k);
114 #endif
115 }
116 if(k==npos) { break; };
117 // increment i until d[i]>=pos[k]-size
118 while((abs(pos[k])-size) > d[i]) { i++; if(i==nd) { break; }
119 #ifdef DEBUG
120 Rprintf("advancing i to %d\n",i);
121 #endif
122 }
123 if(i==nd) { break; }
124
125
126 int l=k;
127 while((l<npos) && ((abs(pos[l])-size) <= d[i])) { l++;
128 #ifdef DEBUG
129 Rprintf("advancing l to %d\n",l);
130 #endif
131 }
132 for(int j=k;j<l;j++) {
133 int pd=d[i]-abs(pos[j]);
134 if(abs(pd)<=size) {
135 // record
136 if(pos[j]>0) {
137 x.push_back(pd);
138 } else {
139 x.push_back(-1*pd);
140 }
141 xi.push_back(j);
142 #ifdef DEBUG
143 Rprintf("recorded i=%d, j=%d\n",i,j);
144 #endif
145 } else {
146 break;
147 }
148 }
149 }
150
151 SEXP xv_R,xiv_R;
152 PROTECT(xv_R=allocVector(INTSXP,x.size()));
153 PROTECT(xiv_R=allocVector(INTSXP,x.size()));
154 int* xv=INTEGER(xv_R);
155 int* xiv=INTEGER(xiv_R);
156
157 int i=0;
158 for(vector<int> ::const_iterator pi=x.begin();pi!=x.end();++pi) {
159 xv[i++]=*pi;
160 }
161 i=0;
162 for(vector<int> ::const_iterator pi=xi.begin();pi!=xi.end();++pi) {
163 xiv[i++]=1+(*pi);
164 }
165
166 SEXP ans_R, names_R;
167 PROTECT(names_R = allocVector(STRSXP, 2));
168 SET_STRING_ELT(names_R, 0, mkChar("x"));
169 SET_STRING_ELT(names_R, 1, mkChar("i"));
170
171 PROTECT(ans_R = allocVector(VECSXP, 2));
172 SET_VECTOR_ELT(ans_R, 0, xv_R);
173 SET_VECTOR_ELT(ans_R, 1, xiv_R);
174 setAttrib(ans_R, R_NamesSymbol, names_R);
175
176 UNPROTECT(4);
177 return(ans_R);
178 }
179
180
181 // determines a set of points within a set of fragments
182 // note: all vectors sorted in ascending order
183 // note: all vectors are integers
184 // x_R - vector of point positions
185 // se_R - vector of start and end positions
186 // fi_R - vector of signed fragment indecies
187 // return_list_R - whether a list of fragments should be returned for each point
188 // return_unique_R - whether points in multiple fragments should be omitted
189 SEXP points_within(SEXP x_R,SEXP se_R,SEXP fi_R,SEXP return_list_R,SEXP return_unique_R,SEXP return_point_counts_R) {
190 #ifdef DEBUG
191 Rprintf("start\n");
192 #endif
193 int* x=INTEGER(x_R);
194 int nx=LENGTH(x_R);
195 int* se=INTEGER(se_R);
196 int* fi=INTEGER(fi_R);
197 int nf=LENGTH(se_R);
198
199 int return_list=*(INTEGER(return_list_R));
200 int return_unique=*(INTEGER(return_unique_R));
201 int return_point_counts=*(INTEGER(return_point_counts_R));
202
203 #ifdef DEBUG
204 Rprintf("nf=%d; nx=%d, return_list=%d, return_unique=%d, return_point_counts=%d\n",nf/2,nx,return_list,return_unique,return_point_counts);
205 #endif
206 set<int> fset;
207
208
209 SEXP nv; int *i_nv;
210 int np=0;
211 if(return_point_counts) {
212 PROTECT(nv = allocVector(INTSXP, nf/2)); np++;
213 i_nv=INTEGER(nv);
214 for(int i=0;i<nf/2;i++) { i_nv[i]=0; }
215 } else if(return_list) {
216 PROTECT(nv = allocVector(VECSXP, nx)); np++;
217 } else {
218 PROTECT(nv=allocVector(INTSXP,nx)); np++;
219 i_nv=INTEGER(nv);
220 }
221
222 int j=0;
223
224 for(int i=0;i<nx;i++) {
225 // advance j
226 while(j<nf && se[j]<x[i]) {
227 int frag=fi[j];
228 if(frag>0) { // insert
229 fset.insert(frag);
230 #ifdef DEBUG
231 Rprintf("inserted frag %d, size=%d\n",frag,fset.size());
232 #endif
233 } else { // remove
234 fset.erase(-frag);
235 #ifdef DEBUG
236 Rprintf("removed frag %d, size=%d\n",-frag,fset.size());
237 #endif
238 }
239 j++;
240 }
241 #ifdef DEBUG
242 Rprintf("i=%d j=%d\n",i,j);
243 #endif
244 if(return_list) {
245 if(fset.empty() || (return_unique && fset.size()>1)) {
246 // assign null list?
247 } else {
248 SEXP fil_R;
249 PROTECT(fil_R=allocVector(INTSXP,fset.size())); np++;
250 int* fil=INTEGER(fil_R);
251 int k=0;
252 for(set<int>::const_iterator ki=fset.begin();ki!=fset.end();++ki) {
253 fil[k]=*ki; k++;
254 }
255 SET_VECTOR_ELT(nv, i, fil_R);
256 UNPROTECT(1); np--;
257 }
258 } else {
259 if(return_point_counts) {
260 for(set<int>::const_iterator ki=fset.begin();ki!=fset.end();++ki) {
261 i_nv[*ki-1]++;
262 }
263 } else {
264 if(fset.empty() || (return_unique && fset.size()>1)) {
265 i_nv[i]=-1;
266 } else {
267 i_nv[i]=*fset.begin();
268 }
269 }
270 }
271 }
272
273 UNPROTECT(np);
274 return(nv);
275 }
276
277
278 SEXP expuni_lr(SEXP x_R, // positions and their number (assumed sorted in ascending order)
279 SEXP mdist_R, // max distance at which points should be considered
280 SEXP lambda_R, // lambda value
281 SEXP spos_R, // starting position
282 SEXP epos_R, // ending position
283 SEXP step_R, // step size
284 SEXP return_peaks_R, // whether peak positions should be returned, or entire score vector
285 SEXP min_peak_lr_R // min peak height (lr)
286 )
287 {
288
289 #ifdef DEBUG
290 Rprintf("start\n");
291 #endif
292 int* x=INTEGER(x_R);
293 int nx=LENGTH(x_R);
294 int mdist=INTEGER(mdist_R)[0];
295 double lambda=*(REAL(lambda_R));
296
297 int return_peaks=*(INTEGER(return_peaks_R));
298 double min_peak=*(REAL(min_peak_lr_R));
299
300 int spos=*(INTEGER(spos_R));
301 int epos=*(INTEGER(epos_R));
302 int step=*(INTEGER(step_R));
303
304 int nsteps=(int) (epos-spos)/step;
305
306
307 #ifdef DEBUG
308 Rprintf("n=%d; lambda=%f; mdist=%d; spos=%d; epos=%d; step=%d; nsteps=%d\n",nx,lambda,mdist,spos,epos,step,nsteps);
309 #endif
310
311
312 SEXP nv;
313 double *d_nv;
314 if(!return_peaks) {
315 PROTECT(nv=allocVector(REALSXP,nsteps+1));
316 d_nv=REAL(nv);
317 }
318
319
320 int i=0; // current index of the first point being used in the calculations
321 int j=0; // current index of the last point being used in the calculations
322 int sx=0; // current sum of all positions
323 int n=0;
324
325 for(int k=0; k<=nsteps; k++) {
326 int cpos=spos+k*step;
327 // increase i until x[i]>=cpos-mdist; remove x from sx; decrement n;
328 while(i<nx && x[i]<(cpos-mdist)) {
329 n--; sx-=x[i]; i++;
330 //Rprintf("incremented i: i=%d; n=%d; sx=%d; cpos-mdist=%d; x[i-1]=%d\n",i,n,sx,cpos-mdist,x[i-1]);
331 }
332 //Rprintf("stable i: i=%d; n=%d; sx=%d; cpos-mdist=%d; x[i-1]=%d\n",i,n,sx,cpos-mdist,x[i-1]);
333
334 //if(i>j) { j=i; }
335
336 // increase j until x[j]>cpos
337 while(j<nx && x[j]<=cpos) {
338 n++; sx+=x[j]; j++;
339 //Rprintf("incremented j: j=%d; n=%d; sx=%d; cpos=%d; x[j-1]=%d\n",j,n,sx,cpos,x[j-1]);
340 }
341 //Rprintf("stable j: j=%d; n=%d; sx=%d; cpos=%d; x[j-1]=%d\n",j,n,sx,cpos,x[j]);
342
343 // calculate lr
344 d_nv[k]=((double)(1-n))*log(lambda)-lambda*((double)(n*(cpos+1)-sx));
345 //Rprintf("recorded lr[%d]=%f\n",k-1,d_nv[k-1]);
346 }
347 UNPROTECT(1);
348 return(nv);
349 }
350
351
352 SEXP allpdist(SEXP x_R,SEXP max_dist_R) {
353
354 #ifdef DEBUG
355 Rprintf("start\n");
356 #endif
357 double* x=REAL(x_R);
358 int nx=LENGTH(x_R);
359 double max_dist=*REAL(max_dist_R);
360 #ifdef DEBUG
361 Rprintf("n=%d; max_dist=%d\n",nx,max_dist);
362 #endif
363
364 vector<double> dist;
365
366 for(int i=0;i<nx;i++) {
367 for(int j=i+1;j<nx;j++) {
368
369 double d=x[j]-x[i];
370 #ifdef DEBUG
371 Rprintf("i=%d; j=%d; d=%f\n",i,j,d);
372 #endif
373 if(d<=max_dist) {
374 dist.push_back(d);
375 } else {
376 break;
377 }
378 }
379 }
380
381 SEXP nv;
382 PROTECT(nv=allocVector(REALSXP,dist.size()));
383 double* i_nv=REAL(nv);
384 int i=0;
385 for(vector<double> ::const_iterator pi=dist.begin();pi!=dist.end();++pi) {
386 i_nv[i++]=*pi;
387 }
388
389 UNPROTECT(1);
390 return(nv);
391 }
392
393 // same as above, but for two different sets
394 SEXP allxpdist(SEXP x_R,SEXP y_R, SEXP max_dist_R) {
395
396 #ifdef DEBUG
397 Rprintf("start\n");
398 #endif
399 double* x=REAL(x_R);
400 double* y=REAL(y_R);
401 int nx=LENGTH(x_R);
402 int ny=LENGTH(y_R);
403 double max_dist=*REAL(max_dist_R);
404 #ifdef DEBUG
405 Rprintf("nx=%d; ny=%d; max_dist=%d\n",nx,ny,max_dist);
406 #endif
407
408 vector<double> dist;
409 int yi=0; // latest y start index
410
411 for(int i=0;i<nx;i++) {
412 // adjust yi so that yi>=x[i]-max_dist_R
413 while(y[yi]<(x[i]-max_dist) && yi<ny) { yi++; }
414 if(yi==ny) { break; }
415
416 for(int j=yi;j<ny;j++) {
417 double d=y[j]-x[i];
418 #ifdef DEBUG
419 Rprintf("i=%d; j=%d; d=%f\n",i,j,d);
420 #endif
421 if(d<=max_dist) {
422 dist.push_back(d);
423 } else {
424 break;
425 }
426 }
427 }
428
429 SEXP nv;
430 PROTECT(nv=allocVector(REALSXP,dist.size()));
431 double* i_nv=REAL(nv);
432 int i=0;
433 for(vector<double> ::const_iterator pi=dist.begin();pi!=dist.end();++pi) {
434 i_nv[i++]=*pi;
435 }
436
437 UNPROTECT(1);
438 return(nv);
439 }
440
441 // returns a vector giving for each point,
442 // number of points within a given max_dist
443 SEXP nwithindist(SEXP x_R,SEXP max_dist_R) {
444
445 #ifdef DEBUG
446 Rprintf("start\n");
447 #endif
448 double* x=REAL(x_R);
449 int nx=LENGTH(x_R);
450 double max_dist=*REAL(max_dist_R);
451
452 SEXP nv;
453 PROTECT(nv=allocVector(REALSXP,nx));
454 double* i_nv=REAL(nv);
455 for(int i=0;i<nx;i++) { i_nv[i]=0; }
456
457 #ifdef DEBUG
458 Rprintf("n=%d; max_dist=%d\n",nx,max_dist);
459 #endif
460
461 for(int i=0;i<nx;i++) {
462 for(int j=i+1;j<nx;j++) {
463
464 double d=x[j]-x[i];
465 #ifdef DEBUG
466 Rprintf("i=%d; j=%d; d=%f\n",i,j,d);
467 #endif
468 if(d<=max_dist) {
469 i_nv[i]++;
470 i_nv[j]++;
471 } else {
472 break;
473 }
474 }
475 }
476
477 UNPROTECT(1);
478 return(nv);
479 }
480
481
482
483
484 // given a list of sorted chromosome signal and background vectors (unscaled), determine
485 // cluster contigs exceeding thr poisson P value, based on a whs window size,
486 // and satisfying mcs cluster size
487 SEXP find_poisson_enrichment_clusters(SEXP pos_R,SEXP flag_R,SEXP wsize_R,SEXP thr_R,SEXP mcs_R,SEXP bgm_R,SEXP mintag_R,SEXP either_R) {
488
489 #ifdef DEBUG
490 Rprintf("start\n");
491 #endif
492 double* pos=REAL(pos_R);
493 int* flag=INTEGER(flag_R);
494 int nt=LENGTH(pos_R);
495
496 int mcs=*INTEGER(mcs_R);
497 int wsize=*INTEGER(wsize_R);
498 int either=*INTEGER(either_R);
499 double thr=REAL(thr_R)[0];
500 double bgm=REAL(bgm_R)[0];
501 double mintag=REAL(mintag_R)[0];
502
503 #ifdef DEBUG
504 Rprintf("nt=%d; wsize=%d; thr=%f; mcs=%d; min.tag=%f; bgm=%f\n",nt,wsize,thr,mcs,mintag,bgm);
505 #endif
506
507
508 vector< pair<double,double> > contigs;
509
510 // running indecies (start and end)
511 int si=0;
512 int ei=0;
513
514 // current window coordinate
515 double ws=pos[0];
516
517 // current window tag counts
518 int cc[2]={0,0};
519
520
521 if(nt>0) {
522 cc[flag[si]]++;
523 // increment window end
524 while(ei<(nt-1) && (pos[ei+1]-ws) <= wsize) {
525 ei++;
526 cc[flag[ei]]++;
527 }
528
529
530 // cluster start,end positions
531 double cs,ce;
532 int inclust=0;
533
534 while(si<nt-1) {
535
536 if((pos[si+1]-ws) > (pos[ei+1] - ws - wsize) && ei!=(nt-1)) {
537 // move end boudnary
538 ei++;
539 ws=pos[ei]-wsize;
540 cc[flag[ei]]++;
541 while(ei<(nt-1) && pos[ei+1]==ws+wsize) {
542 ei++;
543 cc[flag[ei]]++;
544 }
545
546 // increment window start
547 while(si<(nt-1) && pos[si] < ws) {
548 cc[flag[si]]--;
549 si++;
550 }
551
552 } else {
553 // move up start boundary
554 ws=pos[si+1];
555 cc[flag[si]]--;
556 si++;
557 while(si<(nt-1) && pos[si+1]==ws) {
558 cc[flag[si]]--;
559 si++;
560 }
561
562 // increment window end
563 while(ei<(nt-1) && (pos[ei+1] - ws) <= wsize) {
564 ei++;
565 cc[flag[ei]]++;
566 }
567
568 }
569
570 // calculate z score
571 double dc0=((double)cc[0])+0.5;
572 double dc1=((double)cc[1])+0.5;
573 double rte=dc0+dc1-0.25*thr*thr;
574 double lb;
575 if(rte<=0) {
576 lb=0;
577 } else {
578 lb=(sqrt(dc1*dc0) - 0.5*thr*sqrt(rte))/(dc0 - 0.25*thr*thr);
579 if(lb<0) { lb=0; }
580 lb*=lb;
581 }
582
583 //Rprintf("%f=f(%f,%f,%f); %f=f(%f,%f,%f)\n",lb,1.0-thr,2.0*dc1,2.0*dc0,ub,thr,2.0*dc1,2.0*dc0);
584
585 #ifdef DEBUG
586 //double ub=gsl_cdf_fdist_Qinv(thr,2.0*dc1,2.0*dc0)*dc1/dc0;
587 double ub=(sqrt(dc1*dc0) + 0.5*thr*sqrt(rte))/(dc0 - 0.25*thr*thr);
588 ub*=ub;
589 Rprintf("s=%d (%f); e=%d (%f); window: %f-%f; cc=[%d,%d]; lb=%f; ub=%f\n",si,pos[si],ei,pos[ei],ws,ws+wsize,cc[0],cc[1],lb,ub);
590 #endif
591
592 int bc=lb>=bgm && cc[1]>=mintag;
593 if(either) {
594 bc=lb>=bgm || cc[1]>=mintag;
595 }
596 if(bc) {
597 if(inclust) {
598 double nce=ws+wsize/2.0;
599 if(nce-ce > wsize/2.0) {
600 // next point is too far removed, end cluster
601 if(ce-cs >= mcs) {
602 contigs.push_back(pair<double,double>(cs,ce));
603 #ifdef DEBUG
604 Rprintf("recorded cluster %f-%f\n",cs,ce);
605 #endif
606 }
607 inclust=0;
608 } else {
609 ce=nce;
610 }
611 } else {
612 inclust=1;
613 cs=ws+wsize/2.0;
614 ce=cs;
615 }
616 } else {
617 if(inclust) {
618 if(ce-cs >= mcs) {
619 contigs.push_back(pair<double,double>(cs,ce));
620 #ifdef DEBUG
621 Rprintf("recorded cluster %f-%f\n",cs,ce);
622 #endif
623 }
624 inclust=0;
625 }
626 }
627
628 }
629
630 if(inclust) {
631 if(ce-cs >= mcs) {
632 contigs.push_back(pair<double,double>(cs,ce));
633 #ifdef DEBUG
634 Rprintf("recorded cluster %f-%f\n",cs,ce);
635 #endif
636 }
637 inclust=0;
638 }
639 }
640
641 SEXP cs_R,ce_R;
642 PROTECT(cs_R=allocVector(REALSXP,contigs.size()));
643 PROTECT(ce_R=allocVector(REALSXP,contigs.size()));
644 double* csa=REAL(cs_R);
645 double* cea=REAL(ce_R);
646
647 int i=0;
648 for(vector< pair<double,double> >::const_iterator ci=contigs.begin(); ci!=contigs.end();++ci) {
649 csa[i]=ci->first;
650 cea[i]=ci->second;
651 i++;
652 }
653
654 SEXP ans_R, names_R;
655 PROTECT(names_R = allocVector(STRSXP, 2));
656 SET_STRING_ELT(names_R, 0, mkChar("s"));
657 SET_STRING_ELT(names_R, 1, mkChar("e"));
658
659 PROTECT(ans_R = allocVector(VECSXP, 2));
660 SET_VECTOR_ELT(ans_R, 0, cs_R);
661 SET_VECTOR_ELT(ans_R, 1, ce_R);
662 setAttrib(ans_R, R_NamesSymbol, names_R);
663
664 UNPROTECT(4);
665 return(ans_R);
666
667 }
668
669
670 // finds intersection between a list of regions
671 // the flag has +n/-n value, corresponding to the start/end of a segment in n-th regionset
672 // max_val: 1 - report max overlapping value, -1: report min, 0 - don't look at values
673 // returns: $s, $e, ($v) lists
674 SEXP region_intersection(SEXP n_R,SEXP pos_R,SEXP flags_R,SEXP vals_R,SEXP max_val_R,SEXP union_R) {
675 const int max_val=*INTEGER(max_val_R);
676 const int unionr=*INTEGER(union_R);
677 const int n=*INTEGER(n_R);
678 double* pos=REAL(pos_R);
679 int* flags=INTEGER(flags_R);
680 double* val=REAL(vals_R);
681
682 #ifdef DEBUG
683 Rprintf("n=%d; npos=%d; max_val=%d\n",n,LENGTH(pos_R),max_val);
684 #endif
685
686 int s[n]; // flag status for each set
687 double mv[n]; // max/min value of current clusters
688
689 for(int i=0;i<n;i++) { s[i]=0; }
690
691 vector<double> starts;
692 vector<double> ends;
693 vector<double> values;
694
695 int start=-1;
696 double mval=0;
697 for(int i=0;i<LENGTH(pos_R);i++) {
698 // update flags
699 int f=flags[i];
700 if(f>0) {
701 s[abs(f)-1]++;
702 } else {
703 s[abs(f)-1]--;
704 }
705
706 if(max_val!=0 && val[i]*max_val > mval*max_val) { mval=val[i]; }
707
708 // joined status
709 int all;
710 if(unionr) {
711 all=0;
712 for(int j=0;j<n;j++) { if(s[j]>0) { all=1; break;} }
713 } else {
714 all=1;
715 for(int j=0;j<n;j++) { all=all & (s[j]>0); }
716 }
717
718
719 //Rprintf("i=%d; s=[",i);
720 //for(int j=0;j<n;j++) { Rprintf("%d",s[j]); }
721 //Rprintf("]; all=%d; start=%d\n",all,start);
722
723 if(start>=0) {
724 // in fragment
725 if(!all) {
726 // end fragment
727 starts.push_back(pos[start]);
728 ends.push_back(pos[i]);
729 start=-1;
730 if(max_val!=0) { values.push_back(mval); }
731
732 #ifdef DEBUG
733 Rprintf("recorded new fragment (s=%f,e=%f,v=%f);\n",pos[start],pos[i],mval);
734 #endif
735 }
736 } else {
737 // should a fragment be started?
738 if(all) {
739 start=i;
740 if(max_val!=0) { mval=val[i]; }
741 #ifdef DEBUG
742 Rprintf("starting new fragment (s=%f,i=%d);\n",pos[start],i);
743 #endif
744 }
745 }
746 }
747 SEXP cs_R,ce_R,cv_R;
748 PROTECT(cs_R=allocVector(REALSXP,starts.size()));
749 PROTECT(ce_R=allocVector(REALSXP,ends.size()));
750
751 double* csa=REAL(cs_R);
752 int i=0;
753 for(vector<double>::const_iterator ci=starts.begin(); ci!=starts.end(); ++ci) {
754 csa[i]=*ci; i++;
755 }
756
757 csa=REAL(ce_R);
758 i=0;
759 for(vector<double>::const_iterator ci=ends.begin(); ci!=ends.end(); ++ci) {
760 csa[i]=*ci; i++;
761 }
762
763 if(max_val!=0) {
764 PROTECT(cv_R=allocVector(REALSXP,values.size()));
765 csa=REAL(cv_R);
766 i=0;
767 for(vector<double>::const_iterator ci=values.begin(); ci!=values.end(); ++ci) {
768 csa[i]=*ci; i++;
769 }
770 }
771
772 SEXP ans_R, names_R;
773 if(max_val!=0) {
774 PROTECT(names_R = allocVector(STRSXP, 3));
775 SET_STRING_ELT(names_R, 0, mkChar("s"));
776 SET_STRING_ELT(names_R, 1, mkChar("e"));
777 SET_STRING_ELT(names_R, 2, mkChar("v"));
778
779 PROTECT(ans_R = allocVector(VECSXP, 3));
780 SET_VECTOR_ELT(ans_R, 0, cs_R);
781 SET_VECTOR_ELT(ans_R, 1, ce_R);
782 SET_VECTOR_ELT(ans_R, 2, cv_R);
783 } else {
784 PROTECT(names_R = allocVector(STRSXP, 2));
785 SET_STRING_ELT(names_R, 0, mkChar("s"));
786 SET_STRING_ELT(names_R, 1, mkChar("e"));
787
788 PROTECT(ans_R = allocVector(VECSXP, 2));
789 SET_VECTOR_ELT(ans_R, 0, cs_R);
790 SET_VECTOR_ELT(ans_R, 1, ce_R);
791 }
792
793 setAttrib(ans_R, R_NamesSymbol, names_R);
794
795 if(max_val!=0) {
796 UNPROTECT(5);
797 } else {
798 UNPROTECT(4);
799 }
800 return(ans_R);
801 }
802
803 }
804