# HG changeset patch
# User yhoogstrate
# Date 1389254102 18000
# Node ID b1aee4b59049e7f95cba119a58c48694bb5d5289
# Parent df239301559a3b591893001d10e92feac029eacc
Uploaded
diff -r df239301559a -r b1aee4b59049 edgeR_DGE.xml
--- a/edgeR_DGE.xml Thu Jan 09 02:44:37 2014 -0500
+++ b/edgeR_DGE.xml Thu Jan 09 02:55:02 2014 -0500
@@ -8,7 +8,7 @@
http://www.cheetahtemplate.org/docs/users_guide_html_multipage/contents.html
-->
- R CMD BATCH --vanilla '--args
+ R CMD BATCH --vanilla --slave '--args
$design_matrix
$contrast
@@ -22,7 +22,7 @@
$output_BCVplot
$output_MAplot
smearPlot '
- /home/youri/Desktop/galaxy/tools/TraIT/edgeR/DGE/edgeR_DGE_test.R $output_R
+ $R_script $output_R
@@ -41,6 +41,137 @@
+
+
+library(edgeR)
+
+## Fetch commandline arguments
+args <- commandArgs(trailingOnly = TRUE)
+designmatrix = args[1]
+contrast = args[2]
+
+output_1 = args[3]
+output_2 = args[4]
+output_3 = args[5] ##FPKM file - to be implemented
+output_4 = args[6]
+
+QC = nchar(args[7]) > 0
+
+output_5 = args[8]
+output_6 = args[9]
+output_7 = args[10]
+
+output_8 = args[11]
+
+
+
+
+library(edgeR)
+raw_data <- read.delim(designmatrix,header=T,stringsAsFactors=T)
+
+## Obtain read-counts
+read_counts = read.delim(as.character(raw_data[1,1]),header=F,stringsAsFactors=F,row.names=1)
+for(i in 2:length(raw_data[,1])) {
+ print("parsing counts from:")
+ print(raw_data[i,1])
+ read_counts = cbind(read_counts,read.delim(as.character(raw_data[i,1]),header=F,stringsAsFactors=F,row.names=1))
+ print(i)
+}
+
+
+
+## Filter for HTSeq predifined counts:
+exclude_HTSeq = c("no_feature","ambiguous","too_low_aQual","not_aligned","alignment_not_unique")
+exclude_DEXSeq = c("_ambiguous","_empty","_lowaqual","_notaligned")
+
+exclude = match(c(exclude_HTSeq, exclude_DEXSeq),rownames(read_counts))
+exclude = exclude[is.na(exclude)==0]
+if(length(exclude) != 0) {
+ read_counts = read_counts[-exclude,]
+}
+
+
+
+
+
+
+
+
+
+colnames(read_counts) = raw_data[,2]
+dge = DGEList(counts=read_counts,genes=rownames(read_counts))
+
+design_tmp <- raw_data[3:length(raw_data)]
+rownames(design_tmp) <- colnames(dge)
+formula = paste(c("~0",colnames(design_tmp)),collapse = " + ")
+design <- model.matrix(as.formula(formula),design_tmp)
+
+prefixes = colnames(design_tmp)[attr(design,"assign")]
+avoid = nchar(prefixes) == nchar(colnames(design))
+replacements = substr(colnames(design),nchar(prefixes)+1,nchar(colnames(design)))
+replacements[avoid] = colnames(design)[avoid]
+colnames(design) = replacements
+
+
+
+print("Calculating normalization factors...")
+dge = calcNormFactors(dge)
+print("Estimating common dispersion...")
+dge = estimateGLMCommonDisp(dge,design)
+print("Estimating trended dispersion...")
+dge = estimateGLMTrendedDisp(dge,design)
+print("Estimating tagwise dispersion...")
+dge = estimateGLMTagwiseDisp(dge,design)
+
+
+
+
+if (QC == TRUE) {
+ print("Creating QC plots...")
+ #### MDS Plot
+ pdf(output_5)
+ plotMDS(dge, main="edgeR MDS Plot")
+ dev.off()
+ #### Biological coefficient of variation plot
+ pdf(output_6)
+ plotBCV(dge, cex=0.4, main="edgeR: Biological coefficient of variation (BCV) vs abundance")
+ dev.off()
+}
+
+
+
+print("Fitting GLM...")
+fit = glmFit(dge,design)
+
+print(paste("Performing likelihood ratio test: ",contrast,sep=""))
+cont <- c(contrast)
+cont <- makeContrasts(contrasts=cont, levels=design)
+
+lrt <- glmLRT(fit, contrast=cont[,1])
+print(paste("Exporting to file: ",output_1,sep=""))
+write.table(file=output_1,topTags(lrt,n=nrow(read_counts))$table,sep="\t",row.names=T)
+write.table(file=output_2,cpm(dge,normalized.lib.sizes=TRUE),sep="\t")
+## todo EXPORT FPKM
+write.table(file=output_4,dge$counts,sep="\t")
+
+
+
+if (QC == TRUE) {
+ print("Creating MA plots...")
+
+
+ etable <- topTags(lrt, n=nrow(dge))$table
+ etable <- etable[order(etable$FDR), ]
+ pdf(output_7)
+ with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance"))
+ with(subset(etable, FDR<0.05), points(logCPM, logFC, pch=20, col="red"))
+ abline(h=c(-1,1), col="blue")
+ dev.off()
+}
+print("Done!")
+
+
+