diff edgeR_Convert_DGE_Table_to_Bedgraph.xml @ 99:450c1c9a2938 draft

Uploaded
author yhoogstrate
date Wed, 27 May 2015 09:35:28 -0400
parents
children a02794bb9073
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/edgeR_Convert_DGE_Table_to_Bedgraph.xml	Wed May 27 09:35:28 2015 -0400
@@ -0,0 +1,90 @@
+<?xml version="1.0" encoding="UTF-8"?>
+	<tool id="edger_dge_table_to_bedgraph" name="edgeR: Convert 'differentially expressed genes'-table to bedgraph(s)" version="1.0.0">
+	<description>EdgeR's "differentially expressed genes" table to bedgraph(s)</description>
+	
+	<requirements>
+		<requirement type="package" version="1.0.0">edger_dge_table_to_bedgraph</requirement>
+	</requirements>
+	
+	<command interpreter="python">
+		edger_dge_table_to_bedgraph
+			-t $cpm_table
+			-g $geneset
+			
+			#if $logfc:
+				-c3 $logfc
+			#end if
+			
+			#if $logcpm:
+				-c4 $logcpm
+			#end if
+			
+			#if $lr:
+				-c5 $lr
+			#end if
+			
+			#if $pvalue:
+				-c6 $pvalue
+			#end if
+			
+			#if $fdr:
+				-c7 $fdr
+			#end if
+	</command>
+	
+	<inputs>
+		<param format="tabular" name="cpm_table" type="data" label="'differentially expressed genes'-table as result from EdgeR" help="must have 7 columns of which the 2nd are gene names matching the GTF file" />
+		<param format="gtf,gff,gff3" name="geneset" type="data" label="Geneset used for estimating expression levels prior to expression analysis" />
+	
+		<param name="columns" type="select" label="Desired columns" multiple="true" display="checkboxes">
+			<option value="c3" selected="true">logFC</option>
+			<option value="c4">logCPM</option>
+			<option value="c5">LR</option>
+			<option value="c6">PValue</option>
+			<option value="c7" selected="true">FDR</option>
+		</param>
+	</inputs>
+	
+	<outputs>
+		<data format="bedgraph" name="logfc" label="logFC from ${cpm_table.name}">
+			<filter>"c3" in columns</filter>
+		</data>
+		
+		<data format="bedgraph" name="logcpm" label="logCPM from ${cpm_table.name}">
+			<filter>"c4" in columns</filter>
+		</data>
+		
+		<data format="bedgraph" name="lr" label="LR from ${cpm_table.name}">
+			<filter>"c5" in columns</filter>
+		</data>
+		
+		<data format="bedgraph" name="pvalue" label="PValue from ${cpm_table.name}">
+			<filter>"c6" in columns</filter>
+		</data>
+		
+		<data format="bedgraph" name="fdr" label="FDR from ${cpm_table.name}">
+			<filter>"c7" in columns</filter>
+		</data>
+	</outputs>
+	
+	<tests>
+		<test>
+			<param name="cpm_table" value="Convert_DGE_Table_to_Bedgraph/table_01.tabular.txt" />
+			<param name="geneset" value="Convert_DGE_Table_to_Bedgraph/genes_01.gtf" />
+			
+			<param name="columns" value="c3,c7" />
+			
+			<output name="logfc" file="Convert_DGE_Table_to_Bedgraph/logFC.output.bedgraph" />
+			<output name="fdr" file="Convert_DGE_Table_to_Bedgraph/FDR.output.bedgraph" />
+		</test>
+	</tests>
+	
+	<help>
+		P-values and FDRs are swapped from 1 to 0, and 0 to 1, because this way the most siginificant genes will obtain the highest values which is convenient for visualisation.
+	</help>
+	
+	<citations>
+		<citation type="doi">10.1093/bioinformatics/btp616</citation>
+		<citation type="doi">10.1093/bioinformatics/btt688</citation>
+	</citations>
+</tool>