comparison edgeR_Differential_Gene_Expression.xml @ 32:87bf067cfc53 draft

Uploaded
author yhoogstrate
date Wed, 21 May 2014 04:55:20 -0400
parents 27efc93c1ca6
children 7e45df99a6fc
comparison
equal deleted inserted replaced
31:9e9b98a1cb12 32:87bf067cfc53
245 245
246 ## todo EXPORT FPKM 246 ## todo EXPORT FPKM
247 write.table(file=output_raw_counts,dge\$counts,sep="\t",row.names=TRUE,col.names=NA) 247 write.table(file=output_raw_counts,dge\$counts,sep="\t",row.names=TRUE,col.names=NA)
248 248
249 249
250 if(output_MAplot != "/dev/null") { 250 if(output_MAplot != "/dev/null" or output_PValue_distribution_plot != "/dev/null") {
251 write("Creating MA plot...",stdout())
252
253 etable <- topTags(lrt, n=nrow(dge))\$table 251 etable <- topTags(lrt, n=nrow(dge))\$table
254 etable <- etable[order(etable\$FDR), ] 252 etable <- etable[order(etable\$FDR), ]
255 pdf(output_MAplot) 253
256 with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance")) 254 if(output_MAplot != "/dev/null") {
257 with(subset(etable, FDR < fdr), points(logCPM, logFC, pch=20, col="red")) 255 write("Creating MA plot...",stdout())
258 abline(h=c(-1,1), col="blue") 256 pdf(output_MAplot)
259 dev.off() 257 with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance"))
260 } 258 with(subset(etable, FDR < fdr), points(logCPM, logFC, pch=20, col="red"))
261 259 abline(h=c(-1,1), col="blue")
262 if(output_PValue_distribution_plot != "/dev/null") { 260 dev.off()
263 write("Creating P-value distribution plot...",stdout()) 261 }
264 pdf(output_PValue_distribution_plot) 262
265 expressed_genes <- subset(etable, PValue < 0.99) 263 if(output_PValue_distribution_plot != "/dev/null") {
266 h <- hist(expressed_genes\$PValue,breaks=nrow(expressed_genes)/15,main="Binned P-Values (< 0.99)") 264 write("Creating P-value distribution plot...",stdout())
267 center <- sum(h\$counts) / length(h\$counts) 265 pdf(output_PValue_distribution_plot)
268 lines(c(0,1),c(center,center),lty=2,col="red",lwd=2) 266 expressed_genes <- subset(etable, PValue < 0.99)
269 k <- ksmooth(h\$mid, h\$counts) 267 h <- hist(expressed_genes\$PValue,breaks=nrow(expressed_genes)/15,main="Binned P-Values (< 0.99)")
270 lines(k\$x,k\$y,col="red",lwd=2) 268 center <- sum(h\$counts) / length(h\$counts)
271 rmsd <- (h\$counts) - center 269 lines(c(0,1),c(center,center),lty=2,col="red",lwd=2)
272 rmsd <- rmsd^2 270 k <- ksmooth(h\$mid, h\$counts)
273 rmsd <- sum(rmsd) 271 lines(k\$x,k\$y,col="red",lwd=2)
274 rmsd <- sqrt(rmsd) 272 rmsd <- (h\$counts) - center
275 text(0,max(h\$counts),paste("e=",round(rmsd,2),sep=""),pos=4,col="blue") 273 rmsd <- rmsd^2
276 ## change e into epsilon somehow 274 rmsd <- sum(rmsd)
277 dev.off() 275 rmsd <- sqrt(rmsd)
276 text(0,max(h\$counts),paste("e=",round(rmsd,2),sep=""),pos=4,col="blue")
277 ## change e into epsilon somehow
278 dev.off()
279 }
278 } 280 }
279 281
280 ##output_hierarchical_clustering_plot = args[13] 282 ##output_hierarchical_clustering_plot = args[13]
281 ##output_heatmap_plot = args[14] 283 ##output_heatmap_plot = args[14]
282 284