Mercurial > repos > ximgchess > chap_test_20230411
view inference/chapmlaas.xml @ 96:4b123ebffb06 draft
planemo upload for repository https://github.com/CHESSComputing/ChessAnalysisPipeline commit b682c580a95bebc59bc33128973cee4eac8362c7-dirty
author | ximgchess |
---|---|
date | Wed, 24 May 2023 14:47:49 +0000 |
parents | 47d2a1f087d1 |
children | d8baf7dafbd8 |
line wrap: on
line source
<tool id="CHAP_inference_demo" name="CHAP MLaaS" version="0.1.0+galaxy0" python_template_version="3.5" profile="21.05"> <requirements> <requirement type="package" version="2.28.2">requests</requirement> <requirement type="package" version="0.0.2">chessanalysispipeline</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ cp '$input' data.csv && cp '$image' img.png && CHAP --config '$config' && cp preds.json '$output' ]]></command> <inputs> <param type="data" name="config" format="yaml" /> <param type="data" name="input" format="csv" /> <param type="data" name="image" format="png" /> </inputs> <outputs> <data name="output" format="json" /> </outputs> <tests> <test> <param name="config" value="config.yaml"/> <param name="input" value="data.csv"/> <param name="image" value="img.png"/> </test> </tests> <help><![CDATA[ CHESS Analysis Pipeline (CHAP) with Machine Learning as a Service (MLaaS) To run it you need the following: 1. Working TFaaS server 2. A pipeline config with TFaaS, e.g. pipeline: - reader.Reader: filename: data.csv - processor.Processor: {} - reader.BinaryFileReader: filename: img.png - processor.TFaaSImageProcessor: url: "http://localhost:8083" model: mnist verbose: true - writer.Writer: filename: preds.json ]]></help> <citations> <citation type="bibtex"> @misc{githubChessAnalysisPipeline, author = {Kuznetsov, Valentin}, year = {2023}, title = {ChessAnalysisPipeline}, publisher = {GitHub}, journal = {GitHub repository}, url = {https://github.com/CHESSComputing/ChessAnalysisPipeline}, }</citation> </citations> </tool>