Mercurial > repos > ximgchess > chap_test_20230411
view inference/chapmlaas.xml @ 137:0bd8fb3aae96 draft
planemo upload for repository https://github.com/CHESSComputing/ChessAnalysisPipeline commit 85285b9b70eaf7c5db051ed50b000339023ccdf2-dirty
author | ximgchess |
---|---|
date | Tue, 20 Jun 2023 18:13:36 +0000 |
parents | 49985da419b8 |
children |
line wrap: on
line source
<tool id="CHAP_inference_demo" name="CHAP MLaaS" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" python_template_version="@PYTHON_TEMPLATE_VERSION@" profile="@PROFILE@"> <macros> <import>../macros.xml</import> </macros> <requirements> <requirement type="package" version="2.28.2">requests</requirement> <expand macro="chap-requirement" /> </requirements> <command detect_errors="exit_code"><![CDATA[ cp '$input' data.csv && cp '$image' img.png && CHAP --config '$config' && cp preds.json '$output' ]]></command> <inputs> <param type="data" name="config" format="yaml" /> <param type="data" name="input" format="csv" /> <param type="data" name="image" format="png" /> </inputs> <outputs> <data name="output" format="json" /> </outputs> <tests> <test> <param name="config" value="config.yaml"/> <param name="input" value="data.csv"/> <param name="image" value="img.png"/> </test> </tests> <help><![CDATA[ CHESS Analysis Pipeline (CHAP) with Machine Learning as a Service (MLaaS) To run it you need the following: 1. Working TFaaS server 2. A pipeline config with TFaaS, e.g. pipeline: - reader.Reader: filename: data.csv - processor.Processor: {} - reader.BinaryFileReader: filename: img.png - processor.TFaaSImageProcessor: url: "http://localhost:8083" model: mnist verbose: true - writer.Writer: filename: preds.json ]]></help> <citations> <expand macro="chap-citation" /> </citations> </tool>