Mercurial > repos > tomnl > create_sqlite_db
comparison anticipated_purity_lcms.R @ 0:fe7d7cc95ca5 draft
planemo upload for repository https://github.com/computational-metabolomics/mspurity-galaxy commit 2e847122cf605951c334858455fc1d3ebdb189e9-dirty
author | tomnl |
---|---|
date | Tue, 27 Mar 2018 06:03:50 -0400 |
parents | |
children | 1a88758357ed |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fe7d7cc95ca5 |
---|---|
1 library(msPurity) | |
2 library(optparse) | |
3 | |
4 option_list <- list( | |
5 make_option(c("--xset_path"), type="character"), | |
6 make_option(c("-o", "--out_dir"), type="character"), | |
7 make_option(c("--mzML_path"), type="character"), | |
8 make_option("--minOffset", default=0.5), | |
9 make_option("--maxOffset", default=0.5), | |
10 make_option("--ilim", default=0.05), | |
11 make_option("--iwNorm", default="none", type="character"), | |
12 make_option("--exclude_isotopes", action="store_true"), | |
13 make_option("--isotope_matrix", type="character"), | |
14 make_option("--purityType", default="purityFWHMmedian"), | |
15 make_option("--singleFile", default=0), | |
16 make_option("--cores", default=4), | |
17 make_option("--xgroups", type="character"), | |
18 make_option("--rdata_name", default='xset'), | |
19 make_option("--camera_xcms", default='xset'), | |
20 make_option("--files", type="character"), | |
21 make_option("--galaxy_files", type="character"), | |
22 make_option("--choose_class", type="character"), | |
23 make_option("--ignore_files", type="character"), | |
24 make_option("--rtraw_columns", action="store_true") | |
25 ) | |
26 | |
27 # store options | |
28 opt<- parse_args(OptionParser(option_list=option_list)) | |
29 | |
30 print(sessionInfo()) | |
31 print(opt) | |
32 | |
33 if (!is.null(opt$xgroups)){ | |
34 xgroups = as.numeric(strsplit(opt$xgroups, ',')[[1]]) | |
35 }else{ | |
36 xgroups = NULL | |
37 } | |
38 | |
39 | |
40 | |
41 print(xgroups) | |
42 | |
43 if (!is.null(opt$remove_nas)){ | |
44 df <- df[!is.na(df$mz),] | |
45 } | |
46 | |
47 if (is.null(opt$isotope_matrix)){ | |
48 im <- NULL | |
49 }else{ | |
50 im <- read.table(opt$isotope_matrix, | |
51 header = TRUE, sep='\t', stringsAsFactors = FALSE) | |
52 } | |
53 | |
54 if (is.null(opt$exclude_isotopes)){ | |
55 isotopes <- FALSE | |
56 }else{ | |
57 isotopes <- TRUE | |
58 } | |
59 | |
60 if (is.null(opt$rtraw_columns)){ | |
61 rtraw_columns <- FALSE | |
62 }else{ | |
63 rtraw_columns <- TRUE | |
64 } | |
65 | |
66 loadRData <- function(rdata_path, xset_name){ | |
67 #loads an RData file, and returns the named xset object if it is there | |
68 load(rdata_path) | |
69 print(ls()) | |
70 return(get(ls()[ls() == xset_name])) | |
71 } | |
72 | |
73 target_obj <- loadRData(opt$xset_path, opt$rdata_name) | |
74 | |
75 if (opt$camera_xcms=='camera'){ | |
76 xset <- target_obj@xcmsSet | |
77 }else{ | |
78 xset <- target_obj | |
79 } | |
80 | |
81 print(xset) | |
82 | |
83 minOffset = as.numeric(opt$minOffset) | |
84 maxOffset = as.numeric(opt$maxOffset) | |
85 | |
86 | |
87 if (opt$iwNorm=='none'){ | |
88 iwNorm = FALSE | |
89 iwNormFun = NULL | |
90 }else if (opt$iwNorm=='gauss'){ | |
91 iwNorm = TRUE | |
92 iwNormFun = msPurity::iwNormGauss(minOff=-minOffset, maxOff=maxOffset) | |
93 }else if (opt$iwNorm=='rcosine'){ | |
94 iwNorm = TRUE | |
95 iwNormFun = msPurity::iwNormRcosine(minOff=-minOffset, maxOff=maxOffset) | |
96 }else if (opt$iwNorm=='QE5'){ | |
97 iwNorm = TRUE | |
98 iwNormFun = msPurity::iwNormQE.5() | |
99 } | |
100 | |
101 print(xset@filepaths) | |
102 | |
103 | |
104 | |
105 if (!is.null(opt$files)){ | |
106 updated_filepaths <- trimws(strsplit(opt$files, ',')[[1]]) | |
107 updated_filepaths <- updated_filepaths[updated_filepaths != ""] | |
108 print(updated_filepaths) | |
109 updated_filenames = basename(updated_filepaths) | |
110 original_filenames = basename(xset@filepaths) | |
111 update_idx = match(updated_filenames, original_filenames) | |
112 | |
113 if (!is.null(opt$galaxy_files)){ | |
114 galaxy_files <- trimws(strsplit(opt$galaxy_files, ',')[[1]]) | |
115 galaxy_files <- galaxy_files[galaxy_files != ""] | |
116 xset@filepaths <- galaxy_files[update_idx] | |
117 }else{ | |
118 xset@filepaths <- updated_filepaths[update_idx] | |
119 } | |
120 } | |
121 | |
122 if (!is.null(opt$choose_class)){ | |
123 classes <- trimws(strsplit(opt$choose_class, ',')[[1]]) | |
124 | |
125 | |
126 ignore_files_class <- which(!as.character(xset@phenoData$class) %in% classes) | |
127 | |
128 print('choose class') | |
129 print(ignore_files_class) | |
130 }else{ | |
131 ignore_files_class <- NA | |
132 } | |
133 | |
134 if (!is.null(opt$ignore_files)){ | |
135 ignore_files_string <- trimws(strsplit(opt$ignore_files, ',')[[1]]) | |
136 filenames <- rownames(xset@phenoData) | |
137 ignore_files <- which(filenames %in% ignore_files_string) | |
138 | |
139 ignore_files <- unique(c(ignore_files, ignore_files_class)) | |
140 ignore_files <- ignore_files[ignore_files != ""] | |
141 }else{ | |
142 if (anyNA(ignore_files_class)){ | |
143 ignore_files <- NULL | |
144 }else{ | |
145 ignore_files <- ignore_files_class | |
146 } | |
147 | |
148 } | |
149 | |
150 print('ignore_files') | |
151 print(ignore_files) | |
152 | |
153 | |
154 ppLCMS <- msPurity::purityX(xset=xset, | |
155 offsets=c(minOffset, maxOffset), | |
156 cores=opt$cores, | |
157 xgroups=xgroups, | |
158 purityType=opt$purityType, | |
159 ilim = opt$ilim, | |
160 isotopes = isotopes, | |
161 im = im, | |
162 iwNorm = iwNorm, | |
163 iwNormFun = iwNormFun, | |
164 singleFile = opt$singleFile, | |
165 fileignore = ignore_files, | |
166 rtraw_columns=rtraw_columns) | |
167 | |
168 | |
169 dfp <- ppLCMS@predictions | |
170 | |
171 # to make compatable with deconrank | |
172 colnames(dfp)[colnames(dfp)=='grpid'] = 'peakID' | |
173 colnames(dfp)[colnames(dfp)=='median'] = 'medianPurity' | |
174 colnames(dfp)[colnames(dfp)=='mean'] = 'meanPurity' | |
175 colnames(dfp)[colnames(dfp)=='sd'] = 'sdPurity' | |
176 colnames(dfp)[colnames(dfp)=='stde'] = 'sdePurity' | |
177 colnames(dfp)[colnames(dfp)=='RSD'] = 'cvPurity' | |
178 colnames(dfp)[colnames(dfp)=='pknm'] = 'pknmPurity' | |
179 if(sum(is.na(dfp$medianPurity))>0){ | |
180 dfp[is.na(dfp$medianPurity),]$medianPurity = 0 | |
181 } | |
182 | |
183 print('saving tsv') | |
184 print(head(dfp)) | |
185 write.table(dfp, file.path(opt$out_dir, 'anticipated_purity_lcms.tsv'), row.names=FALSE, sep='\t') | |
186 print('saving RData') | |
187 save.image(file.path(opt$out_dir, 'anticipated_purity_lcms.RData')) |