comparison kmersvm/scripts/kmersvm_classify.py @ 5:f99b5099ea55 draft

Uploaded
author test-svm
date Sun, 05 Aug 2012 16:50:57 -0400
parents 66088269713e
children
comparison
equal deleted inserted replaced
4:f2130156fd5d 5:f99b5099ea55
1 #!/usr/bin/python
2 """
3 kmersvm_classify.py; classify sequences using SVM
4 Copyright (C) 2011 Dongwon Lee
5
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
18 """
19
20 import sys
21 import numpy
22 import optparse
23
24 from libkmersvm import *
25
26 """
27 global variables
28 """
29 g_kmer2id = {}
30
31
32 class Parameters:
33 def __init__(self, kernel=None, kmerlen=None, kmerlen2=None, bias=None, A=None, B=None):
34 self.kernel = kernel
35 self.kmerlen = kmerlen
36 self.kmerlen2 = kmerlen2
37 self.bias = bias
38 self.A = A
39 self.B = B
40
41
42 def read_svmwfile_wsk(filename):
43 """read SVM weight file generated by kmersvm_train.py
44
45 Arguments:
46 filename -- string, name of the SVM weight file
47
48 Return:
49 list of SVM weights
50 an object of Parameters class
51 """
52
53 try:
54 f = open(filename, 'r')
55 lines = f.readlines()
56 f.close()
57
58 except IOError, (errno, strerror):
59 print "I/O error(%d): %s" % (errno, strerror)
60 sys.exit(0)
61
62 kmer_svmw_dict = {}
63 params = Parameters()
64
65 for line in lines:
66 #header lines
67 if line[0] == '#':
68 #if this line contains '=', that should be evaluated as a parameter
69 if line.find('=') > 0:
70 name, value = line[1:].split('=')
71 vars(params)[name] = value
72 else:
73 s = line.split()
74 kmerlen = len(s[0])
75 if kmerlen not in kmer_svmw_dict:
76 kmer_svmw_dict[kmerlen] = {}
77
78 kmer_svmw_dict[kmerlen][s[0]] = float(s[2])
79
80 #type casting of parameters
81 params.kernel = int(params.kernel)
82 params.kmerlen = int(params.kmerlen)
83 if params.kernel == 1:
84 params.kmerlen2 = params.kmerlen
85 else:
86 params.kmerlen2 = int(params.kmerlen2)
87 params.bias = float(params.bias)
88 params.A = float(params.A)
89 params.B = float(params.B)
90
91 #set global variable
92 global g_kmer2id
93 for k in range(params.kmerlen, params.kmerlen2+1):
94 kmers = generate_kmers(k)
95 rcmap = generate_rcmap_table(k, kmers)
96 for i in xrange(len(kmers)):
97 g_kmer2id[kmers[i]] = rcmap[i]
98
99 #create numpy arrays of svm weights
100 svmw_list = []
101 for k in range(params.kmerlen, params.kmerlen2+1):
102 svmw = [0]*(2**(2*k))
103
104 for kmer in kmer_svmw_dict[k].keys():
105 svmw[g_kmer2id[kmer]] = kmer_svmw_dict[k][kmer]
106
107 svmw_list.append(numpy.array(svmw, numpy.double))
108
109 return svmw_list, params
110
111
112 def score_seq(s, svmw, kmerlen):
113 """calculate SVM score of given sequence using single set of svm weights
114
115 Arguments:
116 s -- string, DNA sequence
117 svmw -- numpy array, SVM weights
118 kmerlen -- integer, length of k-mer of SVM weight
119
120 Return:
121 SVM score
122 """
123 kmer2id = g_kmer2id
124 x = [0]*(2**(2*kmerlen))
125 for j in xrange(len(s)-kmerlen+1):
126 x[ kmer2id[s[j:j+kmerlen]] ] += 1
127
128 x = numpy.array(x, numpy.double)
129 score_norm = numpy.dot(svmw, x)/numpy.sqrt(numpy.sum(x**2))
130
131 return score_norm
132
133
134 def score_seq_wsk(s, svmwlist, kmerlen_start, kmerlen_end):
135 """calculate svm score of given sequence with multiple sets of svm weights
136
137 Arguments:
138 svmwlist -- list, SVM weights
139 kmerlen_start -- integer, minimum length of k-mer in the list of svm weights
140 kmerlen_end -- integer, maximum length of k-mer in the list of sv weights
141
142 Return:
143 SVM score
144 """
145 kmerlens = range(kmerlen_start, kmerlen_end+1)
146 nkmerlens = len(kmerlens)
147
148 score_norm_sum = 0
149
150 for i in range(nkmerlens):
151 score_norm = score_seq(s, svmwlist[i], kmerlens[i])
152 score_norm_sum += score_norm
153
154 return score_norm_sum
155
156
157 def main(argv = sys.argv):
158 usage = "Usage: %prog [options] SVM_WEIGHTS TEST_SEQ"
159 desc = "1. take two files(one is in FASTA format to score, the other is SVM weight file generated from kmersvm_train.py) as input, 2. score each sequence in the given file"
160 parser = optparse.OptionParser(usage=usage, description=desc)
161 parser.add_option("-o", dest="output", default="kmersvm_scores.out", \
162 help="set the name of output score file (default=kmersvm_scores.out)")
163
164 parser.add_option("-q", dest="quiet", default=False, action="store_true", \
165 help="supress messages (default=false)")
166
167 (options, args) = parser.parse_args()
168
169 if len(args) == 0:
170 parser.print_help()
171 sys.exit(0)
172
173 if len(args) != 2:
174 parser.error("incorrect number of arguments")
175 sys.exit(0)
176
177 ktype_str = ["", "Spectrum", "Weighted Spectrums"]
178
179 svmwf = args[0]
180 seqf = args[1]
181
182 seqs, sids = read_fastafile(seqf)
183 svmwlist, params = read_svmwfile_wsk(svmwf)
184
185 if options.quiet == False:
186 sys.stderr.write('Options:\n')
187 sys.stderr.write(' kernel-type: ' + str(params.kernel) + "." + ktype_str[params.kernel] + '\n')
188 sys.stderr.write(' kmerlen: ' + str(params.kmerlen) + '\n')
189 if params.kernel == 2:
190 sys.stderr.write(' kmerlen2: ' + str(params.kmerlen2) + '\n')
191 sys.stderr.write(' output: ' + options.output + '\n')
192 sys.stderr.write('\n')
193
194 sys.stderr.write('Input args:\n')
195 sys.stderr.write(' SVM weights file: ' + svmwf + '\n')
196 sys.stderr.write(' sequence file: ' + seqf + '\n')
197 sys.stderr.write('\n')
198
199 sys.stderr.write('numer of sequences to score: ' + str(len(seqs)) + '\n')
200 sys.stderr.write('posteriorp A: ' + str(params.A) + '\n')
201 sys.stderr.write('posteriorp B: ' + str(params.B) + '\n')
202 sys.stderr.write('\n')
203
204 f = open(options.output, 'w')
205 f.write("\t".join(["#seq_id", "posterior_prob", "svm_score\n"]))
206
207 kmerlen = params.kmerlen
208 kmerlen2 = params.kmerlen2
209 bias = params.bias
210 A = params.A
211 B = params.B
212 for sidx in xrange(len(seqs)):
213 s = seqs[sidx]
214 score = score_seq_wsk(s, svmwlist, kmerlen, kmerlen2) + bias
215 pp = 1/(1+numpy.exp(score*A+B))
216
217 f.write("\t".join([ sids[sidx], str(pp), str(score)]) + "\n")
218
219 f.close()
220
221 if __name__=='__main__': main()