|
0
|
1 <tool id="kmersvm_classify" name="Score Sequences of Interest">
|
|
|
2 <description>using SVM weights</description>
|
|
|
3 <command interpreter="python">scripts/kmersvm_classify.py -q $inputA $inputB</command>
|
|
|
4 <inputs>
|
|
|
5 <param format="tabular" name="inputA" type="data" label="SVM Weights"/>
|
|
|
6 <param format="fasta" name="inputB" type="data" label="Test Sequences"/>
|
|
|
7 </inputs>
|
|
|
8 <outputs>
|
|
|
9 <data format="tabular" name="kmersvm_scores.out" from_work_dir="kmersvm_scores.out" />
|
|
|
10 </outputs>
|
|
|
11 <tests>
|
|
|
12 <test>
|
|
|
13 <param name="inputA" value="test_weights.out" />
|
|
|
14 <param name="inputB" value="classify_test.fa" />
|
|
|
15 <output name="output" file="classify_output.out" />
|
|
|
16 </test>
|
|
|
17 </tests>
|
|
|
18 <help>
|
|
|
19
|
|
|
20 **What it does**
|
|
|
21
|
|
|
22 Takes as input one file of weights generated by Train SVM and one FASTA file containing sequences to be predicted.
|
|
|
23
|
|
|
24 Returns a file containing the names of the input sequences, as well as the scores and posterior probabilities of the input sequences.
|
|
|
25
|
|
|
26 ----
|
|
|
27
|
|
|
28 **Example**
|
|
|
29
|
|
|
30 Scores file::
|
|
|
31
|
|
|
32 #seq_id posterior_prob svm_score
|
|
|
33 mm8_chr1_3089935_3090035_+ 0.042414638227 -2.13990367846
|
|
|
34 mm8_chr1_5031335_5031435_+ 0.351943600792 -0.478063299876
|
|
|
35 mm8_chr1_5103742_5103842_+ 0.194625711202 -1.01493730026
|
|
|
36 mm8_chr1_5650372_5650472_+ 0.105376843506 -1.49141463695
|
|
|
37
|
|
|
38 </help>
|
|
|
39 </tool>
|