# HG changeset patch # User stevecassidy # Date 1509513595 14400 # Node ID a47980ef2b96fc7a2a08b7ea14c71c10fa06985b # Parent fb617586f4b283a987f0c33b03b43995e26c1b09 planemo upload for repository https://github.com/Alveo/alveo-galaxy-tools commit b5b26e9118f2ad8af109d606746b39a5588f0511-dirty diff -r fb617586f4b2 -r a47980ef2b96 g_chart_parser.py --- a/g_chart_parser.py Mon Dec 05 05:22:05 2016 -0500 +++ b/g_chart_parser.py Wed Nov 01 01:19:55 2017 -0400 @@ -1,15 +1,14 @@ import sys import nltk import argparse -from nltk.corpus import PlaintextCorpusReader + def arguments(): parser = argparse.ArgumentParser(description="run NER on a text") parser.add_argument('--input', required=True, action="store", type=str, help="input text file") - parser.add_argument('--grammar', required=True, action="store", type=str, help="grammar file") - parser.add_argument('--output', required=True, action="store", type=str, help="output file path") - args = parser.parse_args() - return args + parser.add_argument('--grammar', required=True, action="store", type=str, help="grammar file") + parser.add_argument('--output', required=True, action="store", type=str, help="output file path") + return parser.parse_args() def chart_parse(in_file, grammar_file, out_file): @@ -32,11 +31,13 @@ output.write('\n') except Exception as e: - message = "Error with parsing. Check the input files are correct and the grammar contains every word in the input sequence. \n----\n" + str(e) + "\n" + message = """Error with parsing. Check the input files are correct +and the grammar contains every word in the input sequence. \n----\n""" + str(e) + "\n" sys.stderr.write(message) sys.exit() output.close() + if __name__ == '__main__': args = arguments() chart_parse(args.input, args.grammar, args.output) diff -r fb617586f4b2 -r a47980ef2b96 g_collocation.py --- a/g_collocation.py Mon Dec 05 05:22:05 2016 -0500 +++ b/g_collocation.py Wed Nov 01 01:19:55 2017 -0400 @@ -1,9 +1,11 @@ -import sys -import os import nltk -from nltk.collocations import * +from nltk.collocations import BigramCollocationFinder, BigramAssocMeasures +from nltk.collocations import TrigramCollocationFinder, TrigramAssocMeasures import argparse +nltk.download('punkt', quiet=True) + + def Parser(): the_parser = argparse.ArgumentParser(description="Parse the sentence using Chart Parser and a supplied grammar") the_parser.add_argument('--input', required=True, action="store", type=str, help="input text file") @@ -13,8 +15,8 @@ the_parser.add_argument('--coll_type', required=True, action="store", type=str, help="Type of collocations to find") the_parser.add_argument('--pos', required=True, action="store", type=str, help="Data input is a set of POS tags") - args = the_parser.parse_args() - return args + return the_parser.parse_args() + def collocation(inp, outp, freq_filter, results, coll_type, pos): pos = bool(pos == 'true') @@ -31,17 +33,19 @@ for sent in sents: all_words += nltk.word_tokenize(sent) if coll_type == 'bigram': - measures = nltk.collocations.BigramAssocMeasures() + measures = BigramAssocMeasures() finder = BigramCollocationFinder.from_words(all_words) else: - measures = nltk.collocations.TrigramAssocMeasures() + measures = TrigramAssocMeasures() finder = TrigramCollocationFinder.from_words(all_words) finder.apply_freq_filter(int(freq_filter)) - colls = finder.nbest(measures.pmi, int(results)) - with open(outp, 'w') as output: + # score the ngrams and get the first N + colls = finder.score_ngrams(measures.pmi)[:int(results)] + with open(outp, 'w') as output: for coll in colls: - output.write("%s\t%s" % coll) - output.write('\n') + (a, b), score = coll + output.write("%s\t%s\n" % (a, b)) + if __name__ == '__main__': args = Parser() diff -r fb617586f4b2 -r a47980ef2b96 g_frequency.py --- a/g_frequency.py Mon Dec 05 05:22:05 2016 -0500 +++ b/g_frequency.py Wed Nov 01 01:19:55 2017 -0400 @@ -2,12 +2,14 @@ from nltk import FreqDist import argparse +nltk.download('punkt', quiet=True) + + def arguments(): - parser = argparse.ArgumentParser(description="generate a word frequency table from a text") - parser.add_argument('--input', required=True, action="store", type=str, help="input text file") - parser.add_argument('--output', required=True, action="store", type=str, help="output file path") - args = parser.parse_args() - return args + parser = argparse.ArgumentParser(description="generate a word frequency table from a text") + parser.add_argument('--input', required=True, action="store", type=str, help="input text file") + parser.add_argument('--output', required=True, action="store", type=str, help="output file path") + return parser.parse_args() def frequency(in_file, out_file): @@ -18,13 +20,13 @@ text = fd.read() words = nltk.word_tokenize(text) - frequency = FreqDist(words) - total = float(frequency.N()) - + fdist = FreqDist(words) + total = float(fdist.N()) + with open(out_file, 'w') as output: output.write("Word\tCount\tPercent\n") - for pair in frequency.items(): - output.write("{pair[0]}\t{pair[1]}\t{pc:.2f}\n".format(pair=pair, pc=100*pair[1]/total)) + for pair in fdist.items(): + output.write("{pair[0]}\t{pair[1]}\t{pc:.2f}\n".format(pair=pair, pc=100 * pair[1] / total)) if __name__ == '__main__': diff -r fb617586f4b2 -r a47980ef2b96 g_pos.py --- a/g_pos.py Mon Dec 05 05:22:05 2016 -0500 +++ b/g_pos.py Wed Nov 01 01:19:55 2017 -0400 @@ -1,13 +1,14 @@ import nltk import argparse -import json + +nltk.download('averaged_perceptron_tagger', quiet=True) + def arguments(): parser = argparse.ArgumentParser(description="tokenize a text") parser.add_argument('--input', required=True, action="store", type=str, help="input text file") - parser.add_argument('--output', required=True, action="store", type=str, help="output file path") - args = parser.parse_args() - return args + parser.add_argument('--output', required=True, action="store", type=str, help="output file path") + return parser.parse_args() def postag(in_file, out_file): @@ -18,7 +19,7 @@ text = fd.read() sentences = nltk.sent_tokenize(text) - + with open(out_file, 'w') as output: for sentence in sentences: tokens = nltk.word_tokenize(sentence) diff -r fb617586f4b2 -r a47980ef2b96 g_read_sents.py --- a/g_read_sents.py Mon Dec 05 05:22:05 2016 -0500 +++ b/g_read_sents.py Wed Nov 01 01:19:55 2017 -0400 @@ -1,9 +1,12 @@ -import sys + import os import nltk from nltk.corpus import PlaintextCorpusReader import argparse +nltk.download('punkt', quiet=True) + + def Parser(): the_parser = argparse.ArgumentParser(description="Segments the text input into separate sentences") the_parser.add_argument('--input', required=True, action="store", type=str, help="input text file") @@ -12,15 +15,15 @@ args = the_parser.parse_args() return args -def print_out(outp, text, sentences): + +def print_out(outp, sentences): with open(outp, 'w') as output: - curr = 0 for sent in sentences: - times = count_occurences(sent, sent[-1]) - curr = text.find(sent[0], curr) - end = find_nth(text, sent[-1], times, curr) + len(sent[-1]) - output.write(text[curr:end] + '\n') - curr = end + for tok in sent: + output.write(tok) + output.write(' ') + output.write('\n') + def find_nth(string, sub, n, offset): start = string.find(sub, offset) @@ -29,6 +32,7 @@ n -= 1 return start + def count_occurences(lst, string): count = 0 for item in lst: @@ -36,12 +40,13 @@ count += 1 return count + def read_sents(inp, outp): - with open(inp, 'r') as fd: - i = fd.read() + corpus = PlaintextCorpusReader(os.path.dirname(inp), os.path.basename(inp)) sents = corpus.sents() - print_out(outp, i, sents) + print_out(outp, sents) + if __name__ == '__main__': args = Parser() diff -r fb617586f4b2 -r a47980ef2b96 g_read_sents.xml --- a/g_read_sents.xml Mon Dec 05 05:22:05 2016 -0500 +++ b/g_read_sents.xml Wed Nov 01 01:19:55 2017 -0400 @@ -4,11 +4,11 @@ nltk - + g_read_sents.py --input $input1 --output $tab_file -\ +