Mercurial > repos > simon-gladman > phyloseq_nmds
view phyloseq_nmds.R @ 1:e376a618eb9f draft
Updated phyloseq_nmds.R to allow for non standard BIOM files.
author | simon-gladman |
---|---|
date | Sat, 16 Jun 2018 05:03:43 -0400 |
parents | b4606394e7ec |
children | 20adf95eb758 |
line wrap: on
line source
library('getopt') library('ape') suppressPackageStartupMessages(library('phyloseq')) library(biomformat) library(plyr) Sys.setenv("DISPLAY"=":1") library("ggplot2") options(warn=-1) theme_set(theme_bw()) #http://saml.rilspace.com/creating-a-galaxy-tool-for-r-scripts-that-output-images-and-pdfs #http://joey711.github.io/phyloseq-demo/phyloseq-demo.html option_specification = matrix(c( 'otu_table','o',2,'character', 'tax_table','t',2,'character', 'meta_table','s',2,'character', 'biom','i',2,'character', 'subset','x',2,'numeric', 'method','n',2,'character', 'distance','d',2,'character', 'kingdom','k',2,'character', 'cutoff','v',2,'numeric', 'category','c',2,'numeric', 'keep','p',2,'numeric', 'outdir','r',2,'character', 'htmlfile','h',2,'character' ),byrow=TRUE,ncol=4); options <- getopt(option_specification); options(bitmapType="cairo") if (!is.null(options$outdir)) { # Create the directory dir.create(options$outdir,FALSE) } method<-options$method cutoff_value<-options$cutoff ### select a kingdom for phyloseq plot (e.g., "phylum") #kingdom_str<-colnames(tax_table)[options$kingdom] kingdom_str<-options$kingdom distance<-options$distance keep<-options$keep ### This function accepts different two different type of BIOM file format readBIOM<-function(inBiom){ tryCatch({ phyloseq_obj<-import_biom(inBiom) return(phyloseq_obj) }, error=function(e){ biom_obj<-read_biom(inBiom) otu_matrix = as(biom_data(biom_obj), "matrix") OTU_TABLE = otu_table(otu_matrix, taxa_are_rows=TRUE) taxonomy_matrix = as.matrix(observation_metadata(biom_obj), rownames.force=TRUE) TAXONOMY_TABLE = tax_table(taxonomy_matrix) metadata.temp<-sample_metadata(biom_obj) METADATA_TABLE<-plyr::ldply(metadata.temp, rbind) rownames(METADATA_TABLE)<-as.character(METADATA_TABLE$.id) phyloseq_obj = phyloseq(OTU_TABLE, TAXONOMY_TABLE,sample_data(METADATA_TABLE)) return(phyloseq_obj) } ) } if(!is.null(options$biom)){ #physeq<-import_biom(options$biom) physeq<-readBIOM(options$biom) if(length(rank_names(physeq)) == 8){ tax_table(physeq) <- tax_table(physeq)[,-1] colnames(tax_table(physeq)) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species") } ### select column name from sample table for nmds plot category_type<-colnames(sample_data(physeq))[options$subset] ### obtain the unique value in the selected column from sample table category_option<-unique(sample_data(physeq))[,options$subset] }else{ ### read the data into correct data type to create phyloseq object otu_table<-as.matrix(read.table(options$otu_table,header=T,sep="\t")) tax_table<-as.matrix(read.table(options$tax_table,header=T,sep="\t")) sample_table<-read.table(options$meta_table,header=T,sep="\t",stringsAsFactors=F) ### select column name from sample table for nmds plot category_type<-colnames(sample_table)[options$category] ### obtain the unique value in the selected column from sample table category_option<-unique(sample_table[,options$category]) ### create a sample object for phyloseq sample_object<-sample_data(sample_table) ### create otu object for phyloseq OTU<-otu_table(otu_table, taxa_are_rows = TRUE) ### create tax object for phyloseq TAX<-tax_table(tax_table) ### create a phyloseq object physeq = phyloseq(OTU,TAX,sample_object) } ### select a kingdom for phyloseq plot (e.g., "phylum") #kingdom_str<-colnames(tax_table)[options$kingdom] #kingdom_str<-options$kingdom ### Remove OTUs that do not appear more than 5 times in more than half the samples ### filtering OTUs based on cutoff value (e.g., 5) physeq_temp =genefilter_sample(physeq, filterfun_sample(function(x) x > cutoff_value), A=0.1*nsamples(physeq)) ### phyloseq object after filtered physeq_filter = prune_taxa(physeq_temp, physeq) ## Transform to even sampling depth physeq_filter = transform_sample_counts(physeq_filter, function(x) 1E6 * x/sum(x)) ## Keep only the most abundant five phyla phylum.sum = tapply(taxa_sums(physeq_filter), tax_table(physeq_filter)[, kingdom_str], sum, na.rm=TRUE) ### number of most abundance phyla to keep topphyla = names(sort(phylum.sum, TRUE))[1:keep] physeq_filter = prune_taxa((tax_table(physeq_filter)[, kingdom_str] %in% topphyla), physeq_filter) ### select category to plot NMDS category_input = get_variable(physeq_filter, category_type) %in% category_option sample_data(physeq_filter)$category_input <- factor(category_input) ### prepare the directory and file name pdffile <- gsub("[ ]+", "", paste(options$outdir,"/pdffile.pdf")) pngfile_nmds <- gsub("[ ]+", "", paste(options$outdir,"/nmds.png")) pngfile_nmds_facet <- gsub("[ ]+", "", paste(options$outdir,"/nmds_facet.png")) htmlfile <- gsub("[ ]+", "", paste(options$htmlfile)) # Produce PDF file pdf(pdffile); physeq_ord<-ordinate(physeq_filter,method,distance) plot_ordination(physeq,physeq_ord,type="taxa",color="Phylum",title="taxa") plot_ordination(physeq,physeq_ord,type="taxa",color="Phylum",title="taxa") + facet_wrap(formula(paste('~',kingdom_str)),3) garbage<-dev.off(); #png('nmds.png') bitmap(pngfile_nmds,"png16m") plot_ordination(physeq,physeq_ord,type="taxa",color="Phylum",title="taxa") garbage<-dev.off() #png('nmds_facet.png') bitmap(pngfile_nmds_facet,"png16m") plot_ordination(physeq,physeq_ord,type="taxa",color="Phylum",title="taxa") + facet_wrap(formula(paste('~',kingdom_str)),3) garbage<-dev.off() # Produce the HTML file htmlfile_handle <- file(htmlfile) html_output = c('<html><body>', '<table align="center>', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="nmds.png"/></a>', '</td>', '</tr>', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="nmds_facet.png"/></a>', '</td>', '</tr>', '</table>', '</html></body>'); writeLines(html_output, htmlfile_handle); close(htmlfile_handle);