Mercurial > repos > simon-gladman > phyloseq_filter
view phyloseq_filter.R @ 2:54897b7e0551 draft default tip
Updated tool
| author | simon-gladman |
|---|---|
| date | Thu, 22 Nov 2018 08:13:52 -0500 |
| parents | 9fbb104e16d9 |
| children |
line wrap: on
line source
library('getopt') library('ape') library('ggplot2') suppressPackageStartupMessages(library('phyloseq')) library(plyr) Sys.setenv("DISPLAY"=":1") library(biomformat) library(jsonlite) suppressPackageStartupMessages(library(metagenomeSeq)) suppressPackageStartupMessages(library("doParallel")) ncores = ceiling(detectCores() * 0.8) registerDoParallel(cores=ncores) options(warn=-1) theme_set(theme_bw()) ## ggplot # http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html # https://gist.github.com/Mikeyj/5429538 # http://microbiome-tutorials.readthedocs.io/en/latest/_static/Composition.html # https://rstudio-pubs-static.s3.amazonaws.com/268156_d3ea37937f4f4469839ab6fa2c483842.html#otus_that_differ_by (stacked bar plot) ## color ## http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/ #http://saml.rilspace.com/creating-a-galaxy-tool-for-r-scripts-that-output-images-and-pdfs #http://joey711.github.io/phyloseq-demo/phyloseq-demo.html option_specification = matrix(c( 'otu_table','o',2,'character', 'tax_table','t',2,'character', 'meta_table','m',2,'character', 'biom','b',2,'character', 'filter','f',2,'numeric', 'kingdom','k',2,'character', 'cutoff','c',2,'numeric', 'keep','p',2,'numeric', 'outbiom','h',2,'character', 'outdir','d',2,'character', 'htmlfile','w',2,'character' ),byrow=TRUE,ncol=4); options <- getopt(option_specification); options(bitmapType="cairo") if (!is.null(options$outdir)) { # Create the directory dir.create(options$outdir,FALSE) } cutoff_value<-options$cutoff ### select a kingdom for phyloseq plot (e.g., "phylum") #kingdom_str<-colnames(tax_table)[options$kingdom] kingdom_str<-options$kingdom keep<-options$keep filter<-options$filter ### prepare the directory and file name pdffile <- gsub("[ ]+", "", paste(options$outdir,"/pdffile.pdf")) pngfile_before_filtering <- gsub("[ ]+", "", paste(options$outdir,"/barplot_before_filtering.png")) pngfile_after_filtering <- gsub("[ ]+", "", paste(options$outdir,"/barplot_after_filtering.png")) pngfile_pre_phyla_filtering <- gsub("[ ]+", "", paste(options$outdir,"/barplot_before_phyla_filtering.png")) pngfile_post_phyla_filtering<- gsub("[ ]+", "", paste(options$outdir,"/barplot_after_phyla_filtering.png")) htmlfile <- gsub("[ ]+", "", paste(options$htmlfile)) ### overwrite the write_biom function for proper BIOM format ### https://github.com/smdabdoub/biomformat/blob/master/R/IO-methods.R#L124 write_biom <- function(x, biom_file){ cat(toJSON(x, always_decimal=TRUE, auto_unbox=TRUE), file=biom_file) } ### This function accepts different two different type of BIOM file format readBIOM<-function(inBiom){ tryCatch({ phyloseq_obj<-import_biom(inBiom,parallel=TRUE) return(phyloseq_obj) }, error=function(e){ biom_obj<-read_biom(inBiom) otu_matrix = as(biom_data(biom_obj), "matrix") OTU_TABLE = otu_table(otu_matrix, taxa_are_rows=TRUE) taxonomy_matrix = as.matrix(observation_metadata(biom_obj), rownames.force=TRUE) TAXONOMY_TABLE = tax_table(taxonomy_matrix) metadata.temp<-sample_metadata(biom_obj) METADATA_TABLE<-plyr::ldply(metadata.temp, rbind) rownames(METADATA_TABLE)<-as.character(METADATA_TABLE$.id) phyloseq_obj = phyloseq(OTU_TABLE, TAXONOMY_TABLE,sample_data(METADATA_TABLE)) return(phyloseq_obj) } ) } create_PDF<-function(pdf_file,OTU_DATAFRAME_BEFORE_FILTERING,OTU_DATAFRAME_AFTER_FILTERING,physeq_pre_phyla_filtering,physeq_post_phyla_filtering,kingdom_str,htmlfile,pngfile_before_filtering,pngfile_after_filtering,pngfile_pre_phyla_filtering,pngfile_post_phyla_filtering){ pdf(pdf_file); barplot_before_filtering<-ggplot(OTU_DATAFRAME_BEFORE_FILTERING,aes(rownames(OTU_DATAFRAME_BEFORE_FILTERING))) + geom_bar(aes(weight=Abundance),fill="tomato3") + labs(title="Sample Depth Bar Chart",subtitle="Sample Vs Abundance (Before Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=65,vjust=0.6)) print(barplot_before_filtering) barplot_after_filtering<-ggplot(OTU_DATAFRAME_AFTER_FILTERING,aes(rownames(OTU_DATAFRAME_AFTER_FILTERING))) + geom_bar(aes(weight=Abundance),fill="blue") + labs(title="Sample Depth Bar Chart",subtitle="Sample Vs Abundance (After Filtering)", caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=65,vjust=0.6)) print(barplot_after_filtering) barplot_pre_phyla_filtering<-plot_bar(physeq_pre_phyla_filtering, x=colnames(sample_data(physeq_pre_phyla_filtering))[1], fill=kingdom_str) + geom_bar(stat="identity", position="stack") + labs(title=paste("Sample Depth Bar Chart",kingdom_str,sep=":"),subtitle="Sample Vs Abundance (Pre phyla Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=90,vjust=0.6)) + scale_fill_hue() print(barplot_pre_phyla_filtering) barplot_post_phyla_filtering<-plot_bar(physeq_post_phyla_filtering, x=colnames(sample_data(physeq_post_phyla_filtering))[1], fill=kingdom_str) + geom_bar(stat="identity", position="stack") + labs(title=paste("Sample Depth Bar Chart",kingdom_str,sep=":"),subtitle="Sample Vs Abundance (Post phyla Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=90,vjust=0.6)) + scale_fill_hue() print(barplot_post_phyla_filtering) garbage<-dev.off(); #png('barplot_before_filtering.png') bitmap(pngfile_before_filtering,"png16m") barplot_before_filtering_png<-ggplot(OTU_DATAFRAME_BEFORE_FILTERING,aes(rownames(OTU_DATAFRAME_BEFORE_FILTERING))) + geom_bar(aes(weight=Abundance),fill="tomato3") + labs(title="Sample Depth Bar Chart",subtitle="Sample Vs Abundance (Before Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=65,vjust=0.6)) print(barplot_before_filtering_png) garbage<-dev.off() #png('barplot_after_filtering.png') bitmap(pngfile_after_filtering,"png16m") barplot_after_filtering_png<-ggplot(OTU_DATAFRAME_AFTER_FILTERING,aes(rownames(OTU_DATAFRAME_AFTER_FILTERING))) + geom_bar(aes(weight=Abundance),fill="blue") + labs(title="Sample Depth Bar Chart",subtitle="Sample Vs Abundance (After Filtering)", caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=65,vjust=0.6)) print(barplot_after_filtering_png) garbage<-dev.off() #png('barplot_pre_phyla_filtering.png') bitmap(pngfile_pre_phyla_filtering,"png16m") #print(sample_data(physeq_pre_phyla_filtering)) barplot_pre_phyla_filtering<-plot_bar(physeq_pre_phyla_filtering, x=colnames(sample_data(physeq_pre_phyla_filtering))[1], fill=kingdom_str) + geom_bar(stat="identity", position="stack") + labs(title=paste("Sample Depth Bar Chart",kingdom_str,sep=":"),subtitle="Sample Vs Abundance (Pre Phyla Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=90,vjust=0.6)) + scale_fill_hue() print(barplot_pre_phyla_filtering) garbage<-dev.off() #png('barplot_post_phyla_filtering.png') bitmap(pngfile_post_phyla_filtering,"png16m") barplot_post_phyla_filtering<-plot_bar(physeq_post_phyla_filtering, x=colnames(sample_data(physeq_post_phyla_filtering))[1], fill=kingdom_str) + geom_bar(stat="identity", position="stack") + labs(title=paste("Sample Depth Bar Chart",kingdom_str,sep=":"),subtitle="Sample Vs Abundance (Post Phyla Filtering)",caption="source: Input Biom") + xlab("Sample") + ylab("Abundance") + theme(axis.text.x=element_text(angle=90,vjust=0.6)) + scale_fill_hue() print(barplot_post_phyla_filtering) garbage<-dev.off() create_HTML(htmlfile) } create_HTML<-function(htmlfile){ htmlfile_handle <- file(htmlfile) html_output = c('<html><body>', '<table align="center">', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="barplot_before_filtering.png"/></a>', '</td>', '</tr>', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="barplot_after_filtering.png"/></a>', '</td>', '</tr>', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="barplot_before_phyla_filtering.png"/></a>', '</td>', '</tr>', '<tr>', '<td valign="middle" style="vertical-align:middle;">', '<a href="pdffile.pdf"><img src="barplot_after_phyla_filtering.png"/></a>', '</td>', '</tr>', '</table>', '</body></html>'); writeLines(html_output, htmlfile_handle); close(htmlfile_handle); } convert_phyloseq_otutable_to_dataframe<-function(physeq_obj){ temp.df<-data.frame(otu_table(physeq_obj)) temp.df.counts<-as.data.frame(colSums(temp.df)) colnames(temp.df.counts)<-"Abundance" #print(temp.df.counts) return(temp.df.counts) } if(!is.null(options$biom)){ #physeq<-import_biom(options$biom) physeq<-readBIOM(options$biom) if(length(rank_names(physeq)) == 8){ tax_table(physeq) <- tax_table(physeq)[,-1] colnames(tax_table(physeq)) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species") } else { colnames(tax_table(physeq)) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species") } ### select column name from sample table for nmds plot ## which(colnames(sample_data(biom)) == "vegetation_type_id") #category_type<-colnames(sample_data(physeq))[options$subset] #category_type <- options$subset ### obtain the unique value in the selected column from sample table #category_option<-unique(sample_data(physeq))[,options$subset] }else{ ### read the data into correct data type to create phyloseq object otu_table<-as.matrix(read.table(options$otu_table,header=T,sep="\t")) tax_table<-as.matrix(read.table(options$tax_table,header=T,sep="\t")) sample_table<-read.table(options$meta_table,header=T,sep="\t",stringsAsFactors=F) ### select column name from sample table for nmds plot #category_type<-colnames(sample_table)[options$category] ### obtain the unique value in the selected column from sample table #category_option<-unique(sample_table[,options$category]) ### create a sample object for phyloseq sample_object<-sample_data(sample_table) ### create otu object for phyloseq OTU<-otu_table(otu_table, taxa_are_rows = TRUE) ### create tax object for phyloseq TAX<-tax_table(tax_table) ### create a phyloseq object physeq = phyloseq(OTU,TAX,sample_object) } ### make the first column to be the sample ID in the phyloseq object firstColumn = sample_data(physeq)[,1] row_names = rownames(sample_data(physeq)) check = all( firstColumn == row_names) if(!check){ sample_data(physeq) <- cbind(SampleID= rownames(sample_data(physeq)),sample_data(physeq)) } ### extract otu table from phyloseq object before_filtering_dataframe_sampleCounts<-convert_phyloseq_otutable_to_dataframe(physeq) ### filtering OTUs based on cutoff value (e.g., 5) #physeq_temp =genefilter_sample(physeq, filterfun_sample(function(x) x > cutoff_value), A=0.1*nsamples(physeq)) physeq_temp =genefilter_sample(physeq, filterfun_sample(function(x) x > cutoff_value), A=filter*nsamples(physeq)) ### phyloseq object after filtered physeq_filter = prune_taxa(physeq_temp, physeq) ## Transform to even sampling depth #physeq_filter = transform_sample_counts(physeq_filter, function(x) 1E6 * x/sum(x)) #after_filtering.dataframe<-data.frame(otu_table(physeq_filter)) #after_filtering_dataframe_sampleCounts<-as.data.frame(colSums(after_filtering.dataframe)) #colnames(after_filtering_dataframe_sampleCounts)<-"Abundance" after_filtering_dataframe_sampleCounts<-convert_phyloseq_otutable_to_dataframe(physeq_filter) # create_PDF(pdffile,before_filtering_dataframe_sampleCounts,after_filtering_dataframe_sampleCounts,htmlfile,pngfile_before_filtering,pngfile_after_filtering) # kingdom_str <- as.numeric(kingdom_str) ## Keep only the most abundant five phyla ### Phyla - Pre transformation (Transform to even sampling depth) #physeq_filter_pre_transform = tapply(taxa_sums(physeq_filter), tax_table(physeq_filter)[, kingdom_str], sum,na.rm=TRUE) phylum.sum_pre_transform= tapply(taxa_sums(physeq_filter), tax_table(physeq_filter)[, kingdom_str], sum,na.rm=TRUE) topphyla_pre_transform = names(sort(phylum.sum_pre_transform, TRUE))[1:keep] physeq_filter_pre_transform = prune_taxa((tax_table(physeq_filter)[, kingdom_str] %in% topphyla_pre_transform), physeq_filter) ### Phyla - Post Transformation (Transform to even sampling depth) physeq_filter_post_transform = transform_sample_counts(physeq_filter, function(x) 1E6 * x/sum(x)) phylum.sum_post_transform = tapply(taxa_sums(physeq_filter_post_transform), tax_table(physeq_filter_post_transform)[, kingdom_str], sum,na.rm=TRUE) ### number of most abundance phyla to keep topphyla_post_transform = names(sort(phylum.sum_post_transform, TRUE))[1:keep] physeq_filter_post_transform = prune_taxa((tax_table(physeq_filter_post_transform)[, kingdom_str] %in% topphyla_post_transform), physeq_filter_post_transform) ### remove samples with zero value otu_table(physeq_filter_post_transform)<-otu_table(physeq_filter_post_transform)[,colSums(otu_table(physeq_filter_post_transform)) > 0] create_PDF(pdffile,before_filtering_dataframe_sampleCounts,after_filtering_dataframe_sampleCounts,physeq_filter_pre_transform,physeq_filter_post_transform,kingdom_str,htmlfile,pngfile_before_filtering,pngfile_after_filtering,pngfile_pre_phyla_filtering,pngfile_post_phyla_filtering) ### convert phyloseq object to metagenomeSeq - preparing for BIOM output #metagenomeSeq_obj <- phyloseq_to_metagenomeSeq(physeq_filter_post_transform) #metagenomeSeq_biom <- MRexperiment2biom(metagenomeSeq_obj) biom_obj=make_biom(otu_table(physeq_filter_post_transform),sample_metadata=sample_data(physeq_filter_post_transform),observation_metadata=tax_table(physeq_filter_post_transform),matrix_element_type="float") biom_obj_2_metagenomeSeq_obj<-biom2MRexperiment(biom_obj) metagenomeSeq_biom <- MRexperiment2biom(biom_obj_2_metagenomeSeq_obj) ## write biom file write_biom(metagenomeSeq_biom, biom_file=options$outbiom)
