Mercurial > repos > sblanck > smagexp
view MetaRNASeq.R @ 13:7c49b4ec8cff draft
planemo upload for repository https://github.com/sblanck/smagexp/tree/master/smagexp_tools commit f0af01c5d808f31a7190449069ccb197807603af-dirty
author | sblanck |
---|---|
date | Thu, 11 May 2017 11:08:05 -0400 |
parents | 93451f832736 |
children | e5a94bc69bd6 |
line wrap: on
line source
cargs <- commandArgs() cargs <- cargs[(which(cargs == "--args")+1):length(cargs)] nbargs=length(cargs) listfiles=vector() listfilenames=vector() for (i in seq(1,nbargs-6,2)) { listfiles=c(listfiles,cargs[[i]]) listfilenames=c(listfilenames,cargs[[i+1]]) } #mod<-cargs[[length(cargs) - 6]] outputfile <- cargs[[length(cargs) - 5]] result.html = cargs[[length(cargs) - 4]] html.files.path=cargs[[length(cargs) - 3]] result.template=cargs[[length(cargs) - 2]] alpha=0.05 #print(comparison) listData=lapply(listfiles,read.table) orderData=lapply(listData, function(x) x[order(x[1]), ]) rawpval=lapply(orderData,function(x) x[6]) rawpval=lapply(rawpval, function(x) as.numeric(unlist(x))) DE=list() DE=lapply(orderData, function(x) ifelse(x[7]<=0.05,1,0)) FC=list() FC=lapply(orderData, function(x) x[3]) DE=as.data.frame(DE) colnames(DE)=listfilenames FC=as.data.frame(FC) colnames(FC)=listfilenames # the comparison must only have two values and the conds must # be a vector from those values, at least one of each. #if (length(comparison) != 2) { # stop("Comparison type must be a tuple: ", cargs[length(cargs) - 8]) #} sink("/dev/null") dir.create(html.files.path, recursive=TRUE) #library(DESeq) #library(HTSFilter) #DE=list() #FC=list() #i=1 # Open the html output file #file.conn = file(diag.html, open="w") #writeLines( c("<html><body>"), file.conn) # Perform deseq analysis on each study #for(i in 1:length(listfiles)) #{ # f=listfiles[i] # fname=listfilenames[i] # study_name=unlist(strsplit(fname,"[.]"))[1] # print(paste0("study.name ",study_name)) # d <- read.table(f, sep=" ", header=TRUE, row.names=1) # conds<-sapply(strsplit(colnames(d),"[.]"),FUN=function(x) x[1]) # if (length(unique(conds)) != 2) { # warning(as.data.frame(strsplit(colnames(d),"[.]"))) # stop("You can only have two columns types: ", paste(conds,collapse=" ")) # } # if (!identical(sort(comparison), sort(unique(conds)))) { # stop("Column types must use the two names from Comparison type, and vice versa. Must have at least one of each in the Column types.\nColumn types: ", cargs[2], "\n", "Comparison type: ", cargs[3]) # } # if (length(d) != length(conds)) { # stop("Number of total sample columns in counts file must correspond to the columns types field. E.g. if column types is 'kidney,kidney,liver,liver' then number of sample columns in counts file must be 4 as well.") # } # # cds <- newCountDataSet(d, conds) # cds <- estimateSizeFactors(cds) # # cdsBlind <- estimateDispersions( cds, method="blind" ) # # if (length(conds) != 2) { # cds <- estimateDispersions( cds ) # norep = FALSE # } # # if (length(conds) == 2) { # cds <- estimateDispersions( cds, method=method, sharingMode=mod, fitType="parametric" ) # norep = TRUE # } # # filter<-HTSFilter(cds, plot=FALSE) # cds.filter<-filter$filteredData # on.index<-which(filter$on==1) # # res<-as.data.frame(matrix(NA,nrow=nrow(cds),ncol=ncol(cds))) # nbT <- nbinomTest(cds.filter, comparison[1], comparison[2]) # colnames(res)<-colnames(nbT) # res[on.index,]<-nbT # #write.table(res[order(res$padj), ], file=outputfile, quote=FALSE, row.names=FALSE, sep="\t") # # # temp.pval.plot = file.path( html.files.path, paste("PvalHist",i,".png",sep="")) # png( temp.pval.plot, width=500, height=500 ) # hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="") # dev.off() # # writeLines( c("<h2>P-value histogram for ",study_name,"</h2>"), file.conn) # writeLines( c("<img src='PvalHist",i,".png'><br/><br/>"), file.conn) # # #on enregistre la p-value # rawpval[[study_name]]<-res$pval # DE[[study_name]]<-ifelse(res$padj<=alpha,1,0) # FC[[study_name]]<-res$log2FoldChange # # i=i+1 #} # combinations library(metaRNASeq) fishcomb<-fishercomb(rawpval, BHth=alpha) warning(length(rawpval)) invnormcomb<-invnorm(rawpval, nrep=c(8,8), BHth=alpha) #DE[["fishercomb"]]<-ifelse(fishcomb$adjpval<=alpha,1,0) #DE[["invnormcomb"]]<-ifelse(invnormcomb$adjpval<=alpha,1,0) signsFC<-mapply(FC,FUN=function(x) sign(x)) sumsigns<-apply(signsFC,1,sum) commonsgnFC<-ifelse(abs(sumsigns)==dim(signsFC)[2],sign(sumsigns),0) DEresults <- data.frame(DE=DE,"DE.fishercomb"=ifelse(fishcomb$adjpval<=alpha,1,0),"DE.invnorm"=ifelse(invnormcomb$adjpval<=alpha,1,0)) unionDE <- unique(c(fishcomb$DEindices,invnormcomb$DEindices)) FC.selecDE <- data.frame(DEresults[unionDE,],FC[unionDE,],signFC=commonsgnFC[unionDE]) keepDE <- FC.selecDE[which(abs(FC.selecDE$signFC)==1),] fishcomb_de <- rownames(keepDE)[which(keepDE[,"DE.fishercomb"]==1)] invnorm_de <- rownames(keepDE)[which(keepDE[,"DE.invnorm"]==1)] indstudy_de = list() for (i in 1:length(listfiles)) { currentIndstudy_de = rownames(keepDE)[which(keepDE[,i]==1)] indstudy_de[[listfilenames[i]]]=currentIndstudy_de } IDDIRRfishcomb=IDD.IRR(fishcomb_de,indstudy_de) IDDIRRinvnorm=IDD.IRR(invnorm_de,indstudy_de) #conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],Fishercomb=DEresults[["DE.fishercomb"]],Invnormcomb=DEresults[["DE.invnorm"]],sign=commonsgnFC) conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],DE=DEresults,FC=FC,signFC=commonsgnFC) #write DE outputfile write.table(conflits, outputfile,sep="\t",,row.names=FALSE) library(VennDiagram) DE_num=apply(DEresults, 2, FUN=function(x) which(x==1)) venn.plot<-venn.diagram(x=as.list(DE_num),filename=NULL, col="black", fill=1:length(DE_num)+1,alpha=0.6) temp.venn.plot = file.path( html.files.path, paste("venn.png")) png(temp.venn.plot,width=500,height=500) grid.draw(venn.plot) dev.off() library(jsonlite) matrixConflits=as.matrix(conflits) datajson=toJSON(matrixConflits,pretty = TRUE) summaryFishcombjson=toJSON(as.matrix(t(IDDIRRfishcomb)),pretty = TRUE) summaryinvnormjson=toJSON(as.matrix(t(IDDIRRinvnorm)),pretty = TRUE) #vennsplit=strsplit(result.venn,split="/")[[1]] #venn=paste0("./",vennsplit[length(vennsplit)]) vennFilename="venn.png" vennFile=file.path(html.files.path,vennFilename) htmlfile=readChar(result.template, file.info(result.template)$size) htmlfile=gsub(x=htmlfile,pattern = "###DATAJSON###",replacement = datajson, fixed = TRUE) htmlfile=gsub(x=htmlfile,pattern = "###FISHSUMMARYJSON###",replacement = summaryFishcombjson, fixed = TRUE) htmlfile=gsub(x=htmlfile,pattern = "###INVSUMMARYJSON###",replacement = summaryinvnormjson, fixed = TRUE) htmlfile=gsub(x=htmlfile,pattern = "###VENN###",replacement = vennFilename, fixed = TRUE) write(htmlfile,result.html) #library(VennDiagram) #flog.threshold(ERROR) # ##venn.plot<-venn.diagram(x = c(res[c(1:(length(res)-3))],meta=list(res$Meta)),filename = v, col = "black", fill = c(1:(length(res)-2)), margin=0.05, alpha = 0.6,imagetype = "png") #dir.create(result.path, showWarnings = TRUE, recursive = FALSE) # #showVenn<-function(liste,file) #{ # venn.plot<-venn.diagram(x = liste, # filename = vennFilename, col = "black", # fill = 1:length(liste)+1, # margin=0.05, alpha = 0.6,imagetype = "png") ## png(file); ## grid.draw(venn.plot); ## dev.off(); # #} # #l=list() #for(i in 1:length(esets)) #{ # l[[paste("study",i,sep="")]]<-res[[i]] #} #l[["Meta"]]=res[[length(res)-1]] #showVenn(l,vennFile) #file.copy(vennFilename,result.path) #writeLines( c("<h2>Venn Plot</h2>"), file.conn) #writeLines( c("<img src='venn.png'><br/><br/>"), file.conn) #writeLines( c("</body></html>"), file.conn) #close(file.conn) #print("passe6") #sink(NULL)