comparison correlation_matrix.py @ 2:f0c8cdd78e28 draft

Uploaded
author sauria
date Thu, 27 Apr 2017 12:37:59 -0400
parents
children 89009e9b7eb0
comparison
equal deleted inserted replaced
1:9aeb70cf7a41 2:f0c8cdd78e28
1 #!/usr/bin/env python
2
3 import argparse
4
5 import numpy
6 import scipy.stats
7
8 def main():
9 parser = generate_parser()
10 args = parser.parse_args()
11 data, names = load_data(args)
12 corr = find_correlations(data, args)
13 save_data(corr, names, args)
14
15 def load_data(args):
16 infile = open(args.input)
17 names = []
18 data = []
19 if args.column:
20 temp = infile.readline()
21 temp = infile.readline()
22 if args.int:
23 dtype = int
24 else:
25 dtype = float
26 while temp:
27 temp = temp.split()
28 if args.row:
29 names.append(temp[0])
30 temp = temp[1:]
31 data.append([])
32 for i in range(len(temp)):
33 data[-1].append(dtype(temp[i]))
34 temp = infile.readline()
35 if len(names) == 0:
36 names = None
37 data = numpy.array(data)
38 if args.features:
39 data = data.T
40 return data, names
41
42 def find_correlations(data, args):
43 corr = numpy.ones((data.shape[0], data.shape[0]), dtype=numpy.float32)
44 if args.test == 'pearson':
45 findcorr = scipy.stats.pearsonr
46 elif args.test == 'spearman':
47 findcorr = scipy.stats.spearmanr
48 else:
49 findcorr = scipy.stats.kendalltau
50 for i in range(data.shape[0] - 1):
51 for j in range(i + 1, data.shape[0]):
52 corr[i, j] = findcorr(data[i, :], data[j, :])[0]
53 corr[j, i] = corr[i, j]
54 return corr
55
56 def save_data(data, names, args):
57 output = open(args.output, 'w')
58 if names is not None:
59 output.write("%s\n" % '\t'.join(['sample'] + names))
60 for i in range(data.shape[0]):
61 if names is not None:
62 temp = [names[i]]
63 else:
64 temp = []
65 for j in range(data.shape[1]):
66 temp.append("%0.6f" % data[i, j])
67 output.write("%s\n" % '\t'.join(temp))
68 output.close()
69
70 def generate_parser():
71 """Generate an argument parser."""
72 description = "%(prog)s -- Create a raw file of paired aligned reads for a HiC experiment from bam files"
73 parser = argparse.ArgumentParser(description=description)
74 parser.add_argument('-f', dest="features", action='store_true', help="Rows represent features.")
75 parser.add_argument('-i', dest='int', action='store_true', help="Data is of type int.")
76 parser.add_argument('-t', dest='test', action='store', default='pearson',
77 choices=['spearman', 'pearson', 'kendall'], help="Type of correlation to perform.")
78 parser.add_argument('-r', dest='row', action='store_true', help="Row names present.")
79 parser.add_argument('-c', dest='column', action='store_true', help="Column names present.")
80 parser.add_argument(dest="input", type=str, action='store', help="Text files conatining table to be correlated.")
81 parser.add_argument(dest="output", type=str, action='store', help="Output destination.")
82 return parser
83
84 if __name__ == "__main__":
85 main()