Mercurial > repos > rnateam > rnacommender
diff main.py @ 0:d04fa5201f51 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/rna_commander/tools/rna_tools/rna_commender commit 7ad344d108076116e702e1c1e91cea73d8fcadc4
author | rnateam |
---|---|
date | Thu, 28 Jul 2016 05:56:54 -0400 |
parents | |
children | 79c9b4b34b63 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.py Thu Jul 28 05:56:54 2016 -0400 @@ -0,0 +1,48 @@ +#!/usr/bin/env python +"""Recommendation.""" + +import argparse +import sys +from rbpfeatures import RBPVectorizer +from data import PredictDataset +from recommend import Predictor + +__author__ = "Gianluca Corrado" +__copyright__ = "Copyright 2016, Gianluca Corrado" +__license__ = "MIT" +__maintainer__ = "Gianluca Corrado" +__email__ = "gianluca.corrado@unitn.it" +__status__ = "Production" + + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description=__doc__, + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('fasta', metavar='fasta', type=str, + help="""Fasta file containing the RBP \ + sequences.""") + + args = parser.parse_args() + + v = RBPVectorizer(fasta=args.fasta) + rbp_fea = v.vectorize() + + if rbp_fea is not None: + # Define and load dataset + D = PredictDataset( + fp=rbp_fea, fr="AURA_Human_data/RNA_features/HT_utrs.h5") + dataset = D.load() + + model = "AURA_Human_data/model/trained_model.pkl" + + # Define the Trainer and train the model + P = Predictor(predict_dataset=dataset, + trained_model=model, + serendipity_dic=model + '_', + output="output.txt") + P.predict() + else: + sys.stdout.write(""" + The queried protein has no domain similarity with the proteins in the training dataset. It cannot be predicted. + """)