Mercurial > repos > rnateam > rnacommender
comparison data.py @ 0:d04fa5201f51 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/rna_commander/tools/rna_tools/rna_commender commit 7ad344d108076116e702e1c1e91cea73d8fcadc4
author | rnateam |
---|---|
date | Thu, 28 Jul 2016 05:56:54 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d04fa5201f51 |
---|---|
1 """Dataset handler.""" | |
2 | |
3 import numpy as np | |
4 | |
5 import pandas as pd | |
6 | |
7 __author__ = "Gianluca Corrado" | |
8 __copyright__ = "Copyright 2016, Gianluca Corrado" | |
9 __license__ = "MIT" | |
10 __maintainer__ = "Gianluca Corrado" | |
11 __email__ = "gianluca.corrado@unitn.it" | |
12 __status__ = "Production" | |
13 | |
14 | |
15 class Dataset(object): | |
16 """General dataset.""" | |
17 | |
18 def __init__(self, fp, fr, standardize_proteins=False, | |
19 standardize_rnas=False): | |
20 """ | |
21 Constructor. | |
22 | |
23 Parameters | |
24 ---------- | |
25 fp : str | |
26 Protein features | |
27 | |
28 fr : str | |
29 The name of the HDF5 file containing features for the RNAs. | |
30 """ | |
31 self.Fp = fp.astype('float32') | |
32 | |
33 store = pd.io.pytables.HDFStore(fr) | |
34 self.Fr = store.features.astype('float32') | |
35 store.close() | |
36 | |
37 def load(self): | |
38 """Load dataset in memory.""" | |
39 raise NotImplementedError() | |
40 | |
41 | |
42 class PredictDataset(Dataset): | |
43 """Test dataset.""" | |
44 | |
45 def __init__(self, fp, fr): | |
46 """ | |
47 Constructor. | |
48 | |
49 Parameters | |
50 ---------- | |
51 fp : str | |
52 The name of the HDF5 file containing features for the proteins. | |
53 | |
54 fr : str | |
55 The name of the HDF5 file containing features for the RNAs. | |
56 """ | |
57 super(PredictDataset, self).__init__(fp, fr) | |
58 | |
59 def load(self): | |
60 """ | |
61 Load dataset in memory. | |
62 | |
63 Return | |
64 ------ | |
65 Examples to predict. For each example: | |
66 - p contains the protein features, | |
67 - r contains the RNA features, | |
68 - p_names contains the name of the protein, | |
69 - r_names contains the name of the RNA. | |
70 | |
71 """ | |
72 protein_input_dim = self.Fp.shape[0] | |
73 rna_input_dim = self.Fr.shape[0] | |
74 num_examples = self.Fp.shape[1] * self.Fr.shape[1] | |
75 p = np.zeros((num_examples, protein_input_dim)).astype('float32') | |
76 p_names = [] | |
77 r = np.zeros((num_examples, rna_input_dim)).astype('float32') | |
78 r_names = [] | |
79 index = 0 | |
80 for protein in self.Fp.columns: | |
81 for rna in self.Fr.columns: | |
82 p[index] = self.Fp[protein] | |
83 p_names.append(protein) | |
84 r[index] = self.Fr[rna] | |
85 r_names.append(rna) | |
86 index += 1 | |
87 | |
88 return (p, np.array(p_names), r, np.array(r_names)) |