view MotifFinderPlot.py @ 0:bfae792ea7f1 draft

planemo upload for repository https://github.com/eteriSokhoyan/galaxytools/tree/master/tools/GraphClust/Plotting commit f971832d2b34a182314e5201ea6895dd207c5923
author rnateam
date Mon, 13 Mar 2017 17:57:19 -0400
parents
children a85e3675e50d
line wrap: on
line source

#!/usr/bin/env python

import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import matplotlib.patches as mpatches
from collections import defaultdict
import glob
import pandas as pd
import itertools
import seaborn as sns


def plot_bar(ranges, colors, orig_names, cluster_nums):
    fig, ax = plt.subplots()
    for i, k in enumerate(sorted(ranges.keys())):
        ax.broken_barh(ranges[k], (i-0.25, 0.5), facecolors=colors[k])

    ax.set_xlim(0)
    ax.set_xlabel('position in sequence')
    ax.set_yticklabels(['']+[k+'-'+orig_names[k] for k in sorted(ranges.keys())])
    ax.grid(True)
    fig.suptitle('Structure motif prediction\nRegions with same color are prediticted to have similar structures')
    # Add the legend
    patches = [mpatches.Patch(color=cluster_nums[lab], label=lab) for lab in sorted(cluster_nums)]
    ax.legend(handles=patches, loc='best')  # , bbox_to_anchor=(1, 0.5), loc='center left')
    plt.savefig("motif_plot.png", bbox_inches='tight')


def parse_clusters():
    currentdir_files = sorted(list(glob.glob('*')))
    print ("currentdir_files are: ", currentdir_files)
    print ("RESULTS_files are: ", sorted(list(glob.glob('RESULTS/*'))))
    
    cluster_files = sorted(list(glob.glob('RESULTS/*.cluster.all')))
    if len(cluster_files) == 0:
        raise RuntimeError('Expected cluster.all search path is empty:{}'.format(cluster_files))
    palette = itertools.cycle(sns.color_palette("Set2", len(cluster_files)))


    ranges = defaultdict(list)
    colors = defaultdict(list)
    orig_names = defaultdict(list)
    cluster_nums = defaultdict(list)
    for cluster_file in cluster_files:
        cluster_color = next(palette)
        df_cluster = pd.read_csv(cluster_file, sep='\s+', header=None)
        for irow, row in df_cluster.iterrows():
            seq, start, end, strand = row[0].split("#")
            ranges[seq].append((int(start), int(end)-int(start)+1))
            colors[seq].append(cluster_color)
            assert row[1] == 'RESULT'
            cluster_nums['cluster-{}'.format(row[2])] = cluster_color
            assert row[9] == 'ORIGHEAD'
            orig_names[seq] = row[10]
    return ranges, colors, orig_names, cluster_nums


my_ranges, my_colors, my_orig_names, my_cluster_nums = parse_clusters()
plot_bar(my_ranges, my_colors, my_orig_names, my_cluster_nums)