Mercurial > repos > rlegendre > ribo_tools
changeset 0:b8c070add3b7
Uploaded
author | rlegendre |
---|---|
date | Mon, 20 Oct 2014 11:06:17 -0400 |
parents | |
children | 1fbddace2db6 |
files | get_codon_frequency.py |
diffstat | 1 files changed, 748 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/get_codon_frequency.py Mon Oct 20 11:06:17 2014 -0400 @@ -0,0 +1,748 @@ +#!/usr/bin/env python2.7 +# -*- coding: utf-8 -*- + +''' + Created on sep. 2013 + @author: rachel legendre + @copyright: rachel.legendre@igmors.u-psud.fr + @license: GPL v3 +''' + +from __future__ import division +import os, sys, optparse, tempfile, subprocess, re, shutil, commands, urllib, time +import itertools +import math +from decimal import Decimal +from Bio import SeqIO +from Bio.Seq import Seq +from numpy import arange, std, array, linspace, average +#from matplotlib import pyplot as pl +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as pl +from matplotlib import font_manager +from matplotlib import colors +import csv +from scipy import stats +from collections import OrderedDict +# #libraries for debugg +# import pdb +# import cPickle + +def stop_err(msg): + sys.stderr.write("%s\n" % msg) + sys.stderr.write("Programme aborted at %s\n" % time.asctime(time.localtime(time.time()))) + sys.exit() + + +def store_gff(gff): + ''' + parse and store gff file in a dictionnary + ''' + try: + GFF = OrderedDict({}) + with open(gff, 'r') as f_gff : + # GFF['order'] = [] + for line in f_gff: + # # switch commented lines + head = line.split("#")[0] + if head != "" : + feature = (line.split('\t')[8]).split(';') + chrom = line.split('\t')[0] + if chrom not in GFF : + GFF[chrom] = {} + # first line is already gene line : + if line.split('\t')[2] == 'gene' : + gene = feature[0].replace("ID=", "") + if re.search('gene', feature[2]) : + Name = feature[2].replace("gene=", "") + else : + Name = "Unknown" + # #get annotation + note = re.sub(r".+\;Note\=(.+)\;display\=.+", r"\1", line) + note = urllib.unquote(str(note)).replace("\n", "") + # # store gene information + # GFF['order'].append(gene) + GFF[chrom][gene] = {} + GFF[chrom][gene]['chrom'] = line.split('\t')[0] + GFF[chrom][gene]['start'] = int(line.split('\t')[3]) + GFF[chrom][gene]['stop'] = int(line.split('\t')[4]) + GFF[chrom][gene]['strand'] = line.split('\t')[6] + GFF[chrom][gene]['name'] = Name + GFF[chrom][gene]['note'] = note + GFF[chrom][gene]['exon'] = {} + GFF[chrom][gene]['exon_number'] = 0 + # print Name + elif line.split('\t')[2] == 'CDS' : + gene = re.sub(r"Parent\=(.+)_mRNA", r"\1", feature[0]) + if GFF[chrom].has_key(gene) : + GFF[chrom][gene]['exon_number'] += 1 + exon_number = GFF[chrom][gene]['exon_number'] + GFF[chrom][gene]['exon'][exon_number] = {} + GFF[chrom][gene]['exon'][exon_number]['frame'] = line.split('\t')[7] + GFF[chrom][gene]['exon'][exon_number]['start'] = int(line.split('\t')[3]) + GFF[chrom][gene]['exon'][exon_number]['stop'] = int(line.split('\t')[4]) + # # if there is a five prim UTR intron, we change start of gene + elif line.split('\t')[2] == 'five_prime_UTR_intron' : + if GFF[chrom][gene]['strand'] == "+" : + GFF[chrom][gene]['start'] = GFF[chrom][gene]['exon'][1]['start'] + else : + GFF[chrom][gene]['stop'] = GFF[chrom][gene]['exon'][exon_number]['stop'] + return GFF + except Exception, e: + stop_err('Error during gff storage : ' + str(e)) + +#chrI SGD gene 87286 87752 . + . ID=YAL030W;Name=YAL030W;gene=SNC1;Alias=SNC1;Ontology_term=GO:0005484,GO:0005768,GO:0005802,GO:0005886,GO:0005935,GO:0006887,GO:0006893,GO:000689 +#7,GO:0006906,GO:0030658,GO:0031201;Note=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29%3B%20involved%20in%20the%20fusion%20between%20Golgi-derived%20secretory%20vesicles%20with%20the%20plasma%20membra +#ne%3B%20proposed%20to%20be%20involved%20in%20endocytosis%3B%20member%20of%20the%20synaptobrevin%2FVAMP%20family%20of%20R-type%20v-SNARE%20proteins%3B%20SNC1%20has%20a%20paralog%2C%20SNC2%2C%20that%20arose%20fr +#om%20the%20whole%20genome%20duplication;display=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29;dbxref=SGD:S000000028;orf_classification=Verified +#chrI SGD CDS 87286 87387 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified +#chrI SGD CDS 87501 87752 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified + + + +def init_codon_dict(): + + Codon_dict = OrderedDict([('AAA', 0), ('AAC', 0), ('AAG', 0), ('AAT', 0), ('ACA', 0), ('ACC', 0), ('ACG', 0), ('ACT', 0), ('AGA', 0), ('AGC', 0), ('AGG', 0), ('AGT', 0), ('ATA', 0), ('ATC', 0), ('ATG', 0), ('ATT', 0), ('CAA', 0), ('CAC', 0), ('CAG', 0), ('CAT', 0), ('CCA', 0), ('CCC', 0), ('CCG', 0), ('CCT', 0), ('CGA', 0), ('CGC', 0), ('CGG', 0), ('CGT', 0), ('CTA', 0), ('CTC', 0), ('CTG', 0), ('CTT', 0), ('GAA', 0), ('GAC', 0), ('GAG', 0), ('GAT', 0), ('GCA', 0), ('GCC', 0), ('GCG', 0), ('GCT', 0), ('GGA', 0), ('GGC', 0), ('GGG', 0), ('GGT', 0), ('GTA', 0), ('GTC', 0), ('GTG', 0), ('GTT', 0), ('TAA', 0), ('TAC', 0), ('TAG', 0), ('TAT', 0), ('TCA', 0), ('TCC', 0), ('TCG', 0), ('TCT', 0), ('TGA', 0), ('TGC', 0), ('TGG', 0), ('TGT', 0), ('TTA', 0), ('TTC', 0), ('TTG', 0), ('TTT', 0)]) + return Codon_dict + + + +def get_codon_usage(bamfile, GFF, site, kmer, a_pos): + ''' + Read GFF dict and get gene codon usage. + Return dict of codons usage + ''' + try: + codon = init_codon_dict() + + for chrom in GFF.iterkeys(): + for gene in GFF[chrom] : + codon_dict = init_codon_dict() + start = GFF[chrom][gene]['start'] + stop = GFF[chrom][gene]['stop'] + region = chrom + ':' + str(start) + '-' + str(stop) + # #get all reads in this gene + reads = subprocess.check_output(["samtools", "view", bamfile, region]) + head = subprocess.check_output(["samtools", "view", "-H", bamfile]) + read_tab = reads.split('\n') + for read in read_tab: + # # search mapper for eliminate multiple alignements + if 'bowtie' in head: + multi_tag = "XS:i:" + elif 'bwa' in head: + multi_tag = "XT:A:R" + else : + stop_err("No PG tag find in"+samfile+". Please use bowtie or bwa for mapping") + if len(read) == 0: + continue + + len_read = len(read.split('\t')[9]) + # if it's read of good length + if len_read == kmer and multi_tag not in read: + feat = read.split('\t') + seq = feat[9] + # if it's a reverse read + if feat[1] == '16' : + if site == "A" : + # #get A-site + cod = str(Seq(seq[a_pos-5:a_pos-2]).reverse_complement()) + elif site == "P" : + # #get P-site + cod = str(Seq(seq[a_pos-2:a_pos+1]).reverse_complement()) + else : + # #get site-E + cod = str(Seq(seq[a_pos+1:a_pos+4]).reverse_complement()) + # # test if it's a true codon not a CNG codon for example + if codon_dict.has_key(cod) : + codon_dict[cod] += 1 + # if it's a forward read + elif feat[1] == '0' : + if site == "A" : + # #get A-site + cod = seq[a_pos:a_pos+3] + elif site == "P" : + # #get P-site + cod = seq[a_pos-3:a_pos] + else : + # #get site-E + cod = seq[a_pos-6:a_pos-3] + if codon_dict.has_key(cod) : + codon_dict[cod] += 1 + # # add in global dict + for cod, count in codon_dict.iteritems() : + codon[cod] += count + + return codon + + except Exception, e: + stop_err('Error during codon usage calcul: ' + str(e)) + + +''' +http://pyinsci.blogspot.fr/2009/09/violin-plot-with-matplotlib.html +''' +def violin_plot(ax, data, pos, bp=False): + ''' + create violin plots on an axis + ''' + dist = max(pos) - min(pos) + w = min(0.15 * max(dist, 1.0), 0.5) + for d, p in zip(data, pos): + k = stats.gaussian_kde(d) # calculates the kernel density + m = k.dataset.min() # lower bound of violin + M = k.dataset.max() # upper bound of violin + x = arange(m, M, (M - m) / 100.) # support for violin + v = k.evaluate(x) # violin profile (density curve) + v = v / v.max() * w # scaling the violin to the available space + ax.fill_betweenx(x, p, v + p, facecolor=color1, alpha=0.3) + ax.fill_betweenx(x, p, -v + p, facecolor=color2, alpha=0.3) + if bp: + ax.boxplot(data, notch=1, positions=pos, vert=1) + + + +''' +http://log.ooz.ie/2013/02/matplotlib-comparative-histogram-recipe.html +''' +def comphist(x1, x2, orientation='vertical', **kwargs): + """Draw a comparative histogram.""" + # Split keyword args: + kwargs1 = {} + kwargs2 = {} + kwcommon = {} + for arg in kwargs: + tgt_arg = arg[:-1] + if arg.endswith('1'): + arg_dict = kwargs1 + elif arg.endswith('2'): + arg_dict = kwargs2 + else: + arg_dict = kwcommon + tgt_arg = arg + arg_dict[tgt_arg] = kwargs[arg] + kwargs1.update(kwcommon) + kwargs2.update(kwcommon) + + fig = pl.figure() + + # Have both histograms share one axis. + if orientation == 'vertical': + ax1 = pl.subplot(211) + ax2 = pl.subplot(212, sharex=ax1) + # Flip the ax2 histogram horizontally. + ax2.set_ylim(ax1.get_ylim()[::-1]) + pl.setp(ax1.get_xticklabels(), visible=False) + legend_loc = (1, 4) + else: + ax1 = pl.subplot(122) + ax2 = pl.subplot(121, sharey=ax1) + # Flip the ax2 histogram vertically. + ax2.set_xlim(ax2.get_xlim()[::-1]) + pl.setp(ax1.get_yticklabels(), visible=False) + legend_loc = (1, 2) + + ax1.hist(x1, orientation=orientation, **kwargs1) + ax2.hist(x2, orientation=orientation, **kwargs2) + ax2.set_ylim(ax1.get_ylim()[::-1]) + ax1.legend(loc=legend_loc[0]) + ax2.legend(loc=legend_loc[1]) + # Tighten up the layout. + pl.subplots_adjust(wspace=0.0, hspace=0.0) + return fig + + +def compute_FC_plot(cond1_norm, cond2_norm, cod_name, codon_to_test, dirout): + + FC_tab = [] + for z, y in zip(cond1_norm.itervalues(), cond2_norm.itervalues()): + fc = z - y + FC_tab.append(fc) + # #codon_to_test = ['TGA','TAG','TAA'] + + a = [] + b = [] + cod = [] + for codon in cond1_norm.iterkeys(): + if codon in codon_to_test : + fc = cond1_norm[codon] - cond2_norm[codon] + b.append(fc) + cod.append(codon) + else : + fc = cond1_norm[codon] - cond2_norm[codon] + a.append(fc) + + + fig = pl.figure(num=1) + comphist(array(a), array(b), label1='All codon', label2=cod_name, color2='green', bins=30, rwidth=1) + # pl.show() + pl.savefig(dirout + '/hist_codon_fc.png', format="png", dpi=340) + pl.clf() + + + # #violin plot + pos = range(2) + dat = array([array(a), array(b)]) + fig = pl.figure() + pl.title("Distribution of codons FoldChange between two conditions") + ax = fig.add_subplot(1, 1, 1) + lab = array(['All codons', cod_name]) + violin_plot(ax, dat, pos, bp=1) + for x, z in zip(dat, pos): + ax.plot(z, average(x), color='r', marker='*', markeredgecolor='r') + xtickNames = pl.setp(ax, xticklabels=lab) + pl.savefig(dirout + '/violinplot_codon.png', format="png", dpi=340) + pl.clf() + + # (Fval,pval) = stats.ttest_ind(a, b, axis=0, equal_var=True) + (Fval, pval) = stats.mannwhitneyu(a, b) + return pval + + +def get_aa_dict(cond1_norm, cond2_norm): + + # ## create amino acid dictionnary: + AA = OrderedDict({}) + AA['Phe'] = [cond1_norm['TTT'] + cond1_norm['TTC'], cond2_norm['TTT'] + cond2_norm['TTC']] + AA['Leu'] = [cond1_norm['TTA'] + cond1_norm['TTG'] + cond1_norm['CTT'] + cond1_norm['CTC'] + cond1_norm['CTA'] + cond1_norm['CTG'], cond2_norm['TTA'] + cond2_norm['TTG'] + cond2_norm['CTT'] + cond2_norm['CTC'] + cond2_norm['CTA'] + cond2_norm['CTG']] + AA['Ile'] = [cond1_norm['ATT'] + cond1_norm['ATC'] + cond1_norm['ATA'], cond2_norm['ATT'] + cond2_norm['ATC'] + cond2_norm['ATA']] + AA['Met'] = [cond1_norm['ATG'], cond2_norm['ATG']] + AA['Val'] = [cond1_norm['GTT'] + cond1_norm['GTC'] + cond1_norm['GTA'] + cond1_norm['GTG'] + cond1_norm['AGT'] + cond1_norm['AGC'], cond2_norm['GTT'] + cond2_norm['GTC'] + cond2_norm['GTA'] + cond2_norm['GTG'] + cond2_norm['AGT'] + cond2_norm['AGC']] + AA['Ser'] = [cond1_norm['TCT'] + cond1_norm['TCC'] + cond1_norm['TCA'] + cond1_norm['TCG'], cond2_norm['TCT'] + cond2_norm['TCC'] + cond2_norm['TCA'] + cond2_norm['TCG']] + AA['Pro'] = [cond1_norm['CCT'] + cond1_norm['CCC'] + cond1_norm['CCA'] + cond1_norm['CCG'], cond2_norm['CCT'] + cond2_norm['CCC'] + cond2_norm['CCA'] + cond2_norm['CCG']] + AA['Thr'] = [cond1_norm['ACT'] + cond1_norm['ACC'] + cond1_norm['ACA'] + cond1_norm['ACG'], cond2_norm['ACT'] + cond2_norm['ACC'] + cond2_norm['ACA'] + cond2_norm['ACG']] + AA['Ala'] = [cond1_norm['GCT'] + cond1_norm['GCC'] + cond1_norm['GCA'] + cond1_norm['GCG'], cond2_norm['GCT'] + cond2_norm['GCC'] + cond2_norm['GCA'] + cond2_norm['GCG']] + AA['Tyr'] = [cond1_norm['TAT'] + cond1_norm['TAC'], cond2_norm['TAT'] + cond2_norm['TAC']] + AA['Stop'] = [cond1_norm['TAA'] + cond1_norm['TAG'] + cond1_norm['TGA'], cond2_norm['TAA'] + cond2_norm['TAG'] + cond2_norm['TGA']] + AA['His'] = [cond1_norm['CAT'] + cond1_norm['CAC'], cond2_norm['CAT'] + cond2_norm['CAC']] + AA['Gln'] = [cond1_norm['CAA'] + cond1_norm['CAG'], cond2_norm['CAA'] + cond2_norm['CAG']] + AA['Asn'] = [cond1_norm['AAT'] + cond1_norm['AAC'], cond2_norm['AAT'] + cond2_norm['AAC']] + AA['Lys'] = [cond1_norm['AAA'] + cond1_norm['AAG'], cond2_norm['AAA'] + cond2_norm['AAG']] + AA['Asp'] = [cond1_norm['GAT'] + cond1_norm['GAC'], cond2_norm['GAT'] + cond2_norm['GAC']] + AA['Glu'] = [cond1_norm['GAA'] + cond1_norm['GAG'], cond2_norm['GAA'] + cond2_norm['GAG']] + AA['Cys'] = [cond1_norm['TGT'] + cond1_norm['TGC'], cond2_norm['TGT'] + cond2_norm['TGC']] + AA['Trp'] = [cond1_norm['TGG'], cond2_norm['TGG']] + AA['Arg'] = [cond1_norm['CGT'] + cond1_norm['CGC'] + cond1_norm['CGA'] + cond1_norm['CGG'] + cond1_norm['AGA'] + cond1_norm['AGG'], cond2_norm['CGT'] + cond2_norm['CGC'] + cond2_norm['CGA'] + cond2_norm['CGG'] + cond2_norm['AGA'] + cond2_norm['AGG']] + AA['Gly'] = [cond1_norm['GGT'] + cond1_norm['GGC'] + cond1_norm['GGA'] + cond1_norm['GGG'], cond2_norm['GGT'] + cond2_norm['GGC'] + cond2_norm['GGA'] + cond2_norm['GGG']] + + + return AA + + + +def plot_codon_usage(result, dirout, c1, c2, outfile, color1, color2): + ''' + Take list of dict of codon usage and use matplotlib for do graph + ''' + + # #if there are replicat + if len(result) == 4 : + # store each dict in variables to make code more readable + cond1_1 = result[0].copy() + cond1_2 = result[1].copy() + cond2_1 = result[2].copy() + cond2_2 = result[3].copy() + # get codon order in one of list + codon_sorted = sorted(cond1_1.iterkeys(), reverse=False) + # get max of each list + sum11 = sum(list(cond1_1.itervalues())) + sum12 = sum(list(cond1_2.itervalues())) + sum21 = sum(list(cond2_1.itervalues())) + sum22 = sum(list(cond2_2.itervalues())) + # for each codon, get values and sd in each condition + cond1_val = {} + cond1 = {} + cond2_val = {} + cond2 = {} + std_cond1 = [] + std_cond2 = [] + max_val = [] # # max value for graph + for i in codon_sorted: + # # cond1 = moyenne of replicats cond1 divided by max + cond1_val[i] = ((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2) + cond1[i] = ((cond1_1[i] + cond1_2[i]) / 2) + # # standard deviation = absolute value of diffence between replicats of cond1 + std_cond1.append(std(array([(cond1_1[i] * 100 / sum11), (cond1_2[i] * 100 / sum12)]))) + # # cond2 = moyenne of replicats cond1divided by max + cond2_val[i] = ((cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2) + cond2[i] = ((cond2_1[i] + cond2_2[i]) / 2) + # # standard deviation = absolute value of diffence between replicats of cond2 + std_cond2.append(std(array([((cond2_1[i]) * 100 / sum21), ((cond2_2[i]) * 100 / sum22)]))) + # # max value for each codon + max_val.append(max((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2, (cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2)) + + # for graph design + cond1_norm = OrderedDict(sorted(cond1_val.items(), key=lambda t: t[0])) + cond1_norm.update ((x, y * 100) for x, y in cond1_norm.items()) + cond2_norm = OrderedDict(sorted(cond2_val.items(), key=lambda t: t[0])) + cond2_norm.update ((x, y * 100) for x, y in cond2_norm.items()) + max_val = [x * 100 for x in max_val] + + AA = get_aa_dict(cond1_norm, cond2_norm) + max_valaa = [] + cond1_aa = [] + cond2_aa = [] + aa_name = list(AA.iterkeys()) + for z in AA.itervalues(): + cond1_aa.append(z[0]) + cond2_aa.append(z[1]) + max_valaa.append(max(z)) + # # plot amino acid profile : + fig = pl.figure(figsize=(24, 10), num=1) + width = .50 + ax = fig.add_subplot(111) + ax.xaxis.set_ticks([]) + ind = arange(21) + pl.xlim(0, 21) + ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1) + ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2) + for x, y, z in zip(ind, max_valaa, aa_name): + ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14) + ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') + ax.set_xlabel('Amino Acid') + handles, labels = ax.get_legend_handles_labels() + ax.legend(handles, labels) + pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340) + pl.clf() + + + # # compute theorical count in COND2 + sum2 = (sum21 + sum22) / 2 + cond2_count = [] + for z in cond1_norm.itervalues() : + count = int(z * sum2 / 100) + cond2_count.append(count) + + expected = array(cond2_count) + observed = array(list(cond2.itervalues())) + + # write result + with open(outfile, 'w') as out : + out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC\tFC_' + c1 + '\tFC_' + c2 + '\n') + for i in codon_sorted: + out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\t' + str((cond2_1[i] / sum21) / (cond1_1[i] / sum11)) + '\t' + str((cond2_2[i] / sum22) / (cond1_1[i] / sum11)) + '\n') + chi = stats.chisquare(observed, expected) + out.write('Khi2 test\n') + out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n') + + + + # plot result + fig = pl.figure(figsize=(24, 10), num=1) + width = .50 + ind = arange(len(codon_sorted)) + ax = fig.add_subplot(111) + pl.xlim(0, len(codon_sorted) + 1) + ax.spines['right'].set_color('none') + ax.spines['top'].set_color('none') + ax.xaxis.set_ticks([]) + ax.spines['left'].set_smart_bounds(True) + ax.yaxis.set_ticks_position('left') + ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, yerr=std_cond1, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c1) + ax.bar(ind + width, list(cond2_norm.itervalues()), width, yerr=std_cond2, facecolor=color2, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c2) + for x, y, z in zip(ind, max_val, codon_sorted): + ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=8) + ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') + ax.set_xlabel('Codons') + handles, labels = ax.get_legend_handles_labels() + ax.legend(handles, labels) + pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340) + pl.clf() + + + + elif len(result) == 2 : + + # store each dict in OrderedDict sorted by key to make code more readable + cond1 = result[0] + cond2 = result[1] + cond1_norm = result[0].copy() + cond2_norm = result[1].copy() + # pdb.set_trace() + # get codon order in one of list + codon_sorted = sorted(cond1.iterkeys(), reverse=False) + + # get sum of each list + sum1 = sum(list(cond1.itervalues())) + sum2 = sum(list(cond2.itervalues())) + # #Normalize values by sum of each libraries + cond1_norm.update ((x, (y / sum1) * 100.0) for x, y in cond1_norm.items()) + cond2_norm.update((x, (y / sum2) * 100.0) for x, y in cond2_norm.items()) + + # # compute theorical count in COND2 + cond2_count = [] + for z in cond1_norm.itervalues() : + count = int(z * sum2 / 100.0) + cond2_count.append(count) + + expected = array(cond2_count) + observed = array(list(cond2.itervalues())) + + AA = get_aa_dict(cond1_norm, cond2_norm) + + max_val = [] + cond1_aa = [] + cond2_aa = [] + aa_name = list(AA.iterkeys()) + for z in AA.itervalues(): + cond1_aa.append(z[0]) + cond2_aa.append(z[1]) + max_val.append(max(z)) + + # # plot amino acid profile : + fig = pl.figure(num=1) + width = .35 + ax = fig.add_subplot(111) + ind = arange(21) + pl.xlim(0, 21) + #kwargs = {"hatch":'x'} + #ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1, **kwargs) + #kwargs = {"hatch":'.'} + #ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2, **kwargs) + ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1) + ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2) + #for x, y, z in zip(ind, max_val, aa_name): + # ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14) + axis_font = {'size':'16'} + pl.xticks(ind + width, aa_name,**axis_font) + ax.spines['right'].set_visible(False) + ax.spines['top'].set_visible(False) + ax.yaxis.set_ticks_position('left') + ax.xaxis.set_ticks_position('bottom') + #ax.xaxis.set_ticks([]) + ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)',**axis_font) + ax.set_xlabel('Amino Acids', **axis_font) + handles, labels = ax.get_legend_handles_labels() + font_prop = font_manager.FontProperties(size=12) + ax.legend(handles, labels, prop=font_prop) + pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340) + pl.clf() + + # write result + with open(outfile, 'w') as out : + out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC(Mut/WT)\n') + for i in codon_sorted: + out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\n') + out.write('Khi2 test\n') + chi = stats.chisquare(observed, expected) + out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n') + + # # get max value for each codon for histogram + max_val = [] # # max value for graph + for i in cond1: + # # max value for each codon + max_val.append(max(cond1_norm[i], cond2_norm[i])) + + # plot result + fig = pl.figure(figsize=(24, 10), num=1) + width = .50 + ind = arange(len(codon_sorted)) + ax = fig.add_subplot(111) + pl.xlim(0, len(codon_sorted) + 1) + ax.spines['right'].set_color('none') + ax.spines['top'].set_color('none') + ax.xaxis.set_ticks([]) + ax.spines['left'].set_smart_bounds(True) + ax.yaxis.set_ticks_position('left') + ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, label=c1) + ax.bar(ind + width, list(cond2_norm.itervalues()), width, facecolor=color2, label=c2) + for x, y, z in zip(ind, max_val, codon_sorted): + ax.text(x + width, y + 0.02, '%s' % z, ha='center', va='bottom', fontsize=8) + ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') + ax.set_xlabel('Codons') + handles, labels = ax.get_legend_handles_labels() + ax.legend(handles, labels) + pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340) + pl.clf() + + + else : + stop_err('Error running codon usage plotting : ' + str(e)) + + + return (cond1_norm, cond2_norm, chi[1]) + +def write_html_file(html, chi_pval, cond1, cond2): + try : + + + html_str = """ +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" + "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> + +<html xmlns="http://www.w3.org/1999/xhtml"> + <head> + <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> + <link href="/static/june_2007_style/blue/base.css" media="screen" rel="Stylesheet" type="text/css" /> + </head> + <body> + <h3>Global visualization</h3> + <p> + <h5>Visualization of density footprint in each codon.</h5><br> If user has selected analyse with replicats, standart error deviation between each replicate as plotting as error bar in histogram.<br> + <img border="0" src="hist_codons.png" width="1040"/> + </p> + <p> + <h5>Test for homogeneity distribution between each condition</h5><br> + H0 : %s and %s are same distribution <br> + Khi2 test p-value: %s<br><br> + If p-value less than 0.05, we can reject homogeneity distribution so we can hypothesize that distributions are not the same. Otherwise, we accept H0<br> + + </p> + <p> + <h5>Visualization of density footprint in each codon groupe by amino acid</h5><br> + <img border="0" src="hist_amino_acid.png" width="1040"/> + </p> + </body> +</html> """ % (cond1,cond2,chi_pval) + + + html_file = open(html, "w") + html_file.write(html_str) + html_file.close() + + except Exception, e : + stop_err('Error during html page creation : ' + str(e)) + + + + +def check_codons_list (codons) : + + for codon in codons : + if codon not in init_codon_dict().iterkeys() : + stop_err('Please to enter a valid codon : ' + codon + ' is not find\n') + + +def check_index_bam (bamfile) : + # #testing indexed bam file + if os.path.isfile(bamfile + ".bai") : + pass + else : + cmd = "samtools index %s " % (bamfile) + proc = subprocess.Popen(args=cmd, shell=True, stderr=subprocess.PIPE) + returncode = proc.wait() + # if returncode != 0: + # raise Exception + +def __main__(): + ''' + python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -1 psiM1_sorted.bam,psiM2_sorted.bam -2 psiP1_sorted.bam,psiP2_sorted.bam -c psiM -C psiP -l TAG,TAA,TGA -r yes -o psi_count -d psi.html,html_dir > log2 + python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -c psiM -C psiP -1 RPF_psi-_28sorted.bam -2 RPF_psi+_28sorted.bam -l TAG,TAA,TGA -n Stop Codon -r no -o psi_count -d psi.html,html_dir > log2 + ''' + + # Parse command line options + parser = optparse.OptionParser() + parser.add_option("-g", "--gff", dest="gff", type="string", + help="gff file", metavar="FILE") + + parser.add_option("-1", "--file1", dest="file1", type="string", + help="Bam Ribo-Seq alignments cond 1, if rep option, separate files by commas ", metavar="FILE") + + parser.add_option("-2", "--file2", dest="file2", type="string", + help="Bam Ribo-Seq alignments cond 2, if rep option, separate files by commas", metavar="FILE") + + parser.add_option("-c", "--cond1", dest="c1", type="string", + help="Name for first condition", metavar="STR") + + parser.add_option("-C", "--cond2", dest="c2", type="string", + help="Name of second condition", metavar="STR") + + parser.add_option("-k", "--kmer", dest="kmer", type="int", + help="Longer of your phasing reads", metavar="INT") + +# parser.add_option("-l", "--list", dest="list_cod", type= "string", +# help="list of codons to compare to other", metavar="STR") + + parser.add_option("-o", "--out", dest="outfile", type="string", + help="write report to FILE", metavar="FILE") + + parser.add_option("-d", "--dirout", dest="dirout", type="string", + help="write report to PNG files", metavar="FILE") + + parser.add_option("-a", "--asite", dest="asite", type="int", + help="Off-set from the 5'end of the footprint to the A-site", metavar="INT") + + parser.add_option("-s", "--site", dest="site", type="string", + help="Script can compute in site A, P or E", metavar="A|P|E") + + parser.add_option("-r", "--rep", dest="rep", type="string", + help="if replicate or not", metavar="yes|no") + + parser.add_option("-x", "--hex_col1", dest="color1", type= "string", + help="Color for first condition", metavar="STR") + + parser.add_option("-X", "--hex_col2", dest="color2", type= "string", + help="Color for second condition", metavar="STR") + + parser.add_option("-q", "--quiet", + action="store_false", dest="verbose", default=True, + help="don't print status messages to stdout") + + (options, args) = parser.parse_args() + print "Begin codon frequency analysis at", time.asctime(time.localtime(time.time())) + + try: + authorized_site = ["A", "P", "E"] + if options.site not in authorized_site : + stop_err(options.site + ' is not a authorized ribosome site') + + ## Check if colors exist + if not colors.is_color_like(options.color1) : + stop_err( options.color1+' is not a proper color' ) + if not colors.is_color_like(options.color2) : + stop_err( options.color2+' is not a proper color' ) + + GFF = store_gff(options.gff) + + #### NOT USE IN FINAL VERSION + # # get codon list + # codons = options.list_cod.upper().split(',') + # check_codons_list(codons) + + # # get html file and directory : + (html, html_dir) = options.dirout.split(',') + if os.path.exists(html_dir): + raise + try: + os.mkdir(html_dir) + except: + raise Exception(html_dir + ' mkdir') + # #RUN analysis + # #If there are replicats + if options.rep == "yes" : + result = [] + # split name of each file options by "," + cond1 = options.file1.split(',') + cond2 = options.file2.split(',') + # # calcul for each file + for fh in itertools.chain(cond1, cond2): + check_index_bam (fh) + result.append(get_codon_usage(fh, GFF, options.site, options.kmer, options.asite)) + (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2) + # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir) + + + # #If there are no replicat + elif options.rep == "no" : + result = [] + # #calcul for each cond + for fh in (options.file1, options.file2): + check_index_bam (fh) + result.append(get_codon_usage(fh, GFF, options.site, options.kmer,options.asite)) + (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2) + # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir) + + else : + sys.stderr.write("Please enter yes or no for --rep option. Programme aborted at %s" % time.asctime(time.localtime(time.time()))) + sys.exit() + + # write_html_file(html,chi_pval,t_pval,codons,options.c1, options.c2) + write_html_file(html, chi_pval, options.c1, options.c2) + + print "Finish codon frequency analysis at", time.asctime(time.localtime(time.time())) + except Exception, e: + stop_err('Error running codon frequency analysis (main program) : ' + str(e)) + + +if __name__=="__main__": + __main__()