Mercurial > repos > rhpvorderman > shm_csr
diff sequence_overview.r @ 0:64d74ba01a7c draft
"planemo upload commit 78d1fae87dbcf490e49a9f99e7a06de7328e16d4"
| author | rhpvorderman |
|---|---|
| date | Wed, 27 Oct 2021 12:34:47 +0000 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sequence_overview.r Wed Oct 27 12:34:47 2021 +0000 @@ -0,0 +1,363 @@ +library(reshape2) + +args <- commandArgs(trailingOnly = TRUE) + +before.unique.file = args[1] +merged.file = args[2] +outputdir = args[3] +gene.classes = unlist(strsplit(args[4], ",")) +hotspot.analysis.sum.file = args[5] +NToverview.file = paste(outputdir, "ntoverview.txt", sep="/") +NTsum.file = paste(outputdir, "ntsum.txt", sep="/") +main.html = "index.html" +empty.region.filter = args[6] + + +setwd(outputdir) + +before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") +merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") +hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="") + +#before.unique = before.unique[!grepl("unmatched", before.unique$best_match),] + +if(empty.region.filter == "leader"){ + before.unique$seq_conc = paste(before.unique$FR1.IMGT.seq, before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) +} else if(empty.region.filter == "FR1"){ + before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) +} else if(empty.region.filter == "CDR1"){ + before.unique$seq_conc = paste(before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) +} else if(empty.region.filter == "FR2"){ + before.unique$seq_conc = paste(before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) +} + +IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")] +IDs$best_match = as.character(IDs$best_match) + +dat = data.frame(table(before.unique$seq_conc)) + +names(dat) = c("seq_conc", "Freq") + +dat$seq_conc = factor(dat$seq_conc) + +dat = dat[order(as.character(dat$seq_conc)),] + +#writing html from R... +get.bg.color = function(val){ + if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color + return(ifelse(val,"#eafaf1","#f9ebea")) + } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0 + return(ifelse(val > 0,"#eaecee","white")) + } else { + return("white") + } +} +td = function(val) { + return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep="")) +} +tr = function(val) { + return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse="")) +} + +make.link = function(id, clss, val) { + paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="") +} +tbl = function(df) { + res = "<table border='1'>" + for(i in 1:nrow(df)){ + res = paste(res, tr(df[i,]), sep="") + } + res = paste(res, "</table>") +} + +cat("<center><img src=''> Please note that this tab is based on all sequences before filter unique sequences and the remove duplicates based on filters are applied. In this table only sequences occuring more than once are included. </center>", file=main.html, append=F) +cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=T) + +if(empty.region.filter == "leader"){ + cat("<caption>FR1+CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) +} else if(empty.region.filter == "FR1"){ + cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) +} else if(empty.region.filter == "CDR1"){ + cat("<caption>FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) +} else if(empty.region.filter == "FR2"){ + cat("<caption>CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) +} + +cat("<tr>", file=main.html, append=T) +cat("<th>Sequence</th><th>Functionality</th><th>IGA1</th><th>IGA2</th><th>IGG1</th><th>IGG2</th><th>IGG3</th><th>IGG4</th><th>IGM</th><th>IGE</th><th>UN</th>", file=main.html, append=T) +cat("<th>total IGA</th><th>total IGG</th><th>total IGM</th><th>total IGE</th><th>number of subclasses</th><th>present in both IGA and IGG</th><th>present in IGA, IGG and IGM</th><th>present in IGA, IGG and IGE</th><th>present in IGA, IGG, IGM and IGE</th><th>IGA1+IGA2</th>", file=main.html, append=T) +cat("<th>IGG1+IGG2</th><th>IGG1+IGG3</th><th>IGG1+IGG4</th><th>IGG2+IGG3</th><th>IGG2+IGG4</th><th>IGG3+IGG4</th>", file=main.html, append=T) +cat("<th>IGG1+IGG2+IGG3</th><th>IGG2+IGG3+IGG4</th><th>IGG1+IGG2+IGG4</th><th>IGG1+IGG3+IGG4</th><th>IGG1+IGG2+IGG3+IGG4</th>", file=main.html, append=T) +cat("</tr>", file=main.html, append=T) + + + +single.sequences=0 #sequence only found once, skipped +in.multiple=0 #same sequence across multiple subclasses +multiple.in.one=0 #same sequence multiple times in one subclass +unmatched=0 #all of the sequences are unmatched +some.unmatched=0 #one or more sequences in a clone are unmatched +matched=0 #should be the same als matched sequences + +sequence.id.page="by_id.html" + +for(i in 1:nrow(dat)){ + + ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),] + ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),] + + cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),] + cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),] + cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),] + cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),] + + cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),] + + ce = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGE", IDs$best_match),] + + un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),] + + allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, ce, un) + + ca1.n = nrow(ca1) + ca2.n = nrow(ca2) + + cg1.n = nrow(cg1) + cg2.n = nrow(cg2) + cg3.n = nrow(cg3) + cg4.n = nrow(cg4) + + cm.n = nrow(cm) + + ce.n = nrow(ce) + + un.n = nrow(un) + + classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, ce.n, un.n) + + classes.sum = sum(classes) + + if(classes.sum == 1){ + single.sequences = single.sequences + 1 + next + } + + if(un.n == classes.sum){ + unmatched = unmatched + 1 + next + } + + classes.no.un = classes[-length(classes)] + + in.classes = sum(classes.no.un > 0) + + matched = matched + in.classes #count in how many subclasses the sequence occurs. + + if(any(classes == classes.sum)){ + multiple.in.one = multiple.in.one + 1 + } else if (un.n > 0) { + some.unmatched = some.unmatched + 1 + } else { + in.multiple = in.multiple + 1 + } + + id = as.numeric(dat[i,"seq_conc"]) + + functionality = paste(unique(allc[,"Functionality"]), collapse=",") + + by.id.row = c() + + if(ca1.n > 0){ + cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep="")) + } + + if(ca2.n > 0){ + cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep="")) + } + + if(cg1.n > 0){ + cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep="")) + } + + if(cg2.n > 0){ + cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep="")) + } + + if(cg3.n > 0){ + cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep="")) + } + + if(cg4.n > 0){ + cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep="")) + } + + if(cm.n > 0){ + cat(tbl(cm), file=paste("IGM_", id, ".html", sep="")) + } + + if(ce.n > 0){ + cat(tbl(ce), file=paste("IGE_", id, ".html", sep="")) + } + + if(un.n > 0){ + cat(tbl(un), file=paste("un_", id, ".html", sep="")) + } + + ca1.html = make.link(id, "IGA1", ca1.n) + ca2.html = make.link(id, "IGA2", ca2.n) + + cg1.html = make.link(id, "IGG1", cg1.n) + cg2.html = make.link(id, "IGG2", cg2.n) + cg3.html = make.link(id, "IGG3", cg3.n) + cg4.html = make.link(id, "IGG4", cg4.n) + + cm.html = make.link(id, "IGM", cm.n) + + ce.html = make.link(id, "IGE", ce.n) + + un.html = make.link(id, "un", un.n) + + #extra columns + ca.n = ca1.n + ca2.n + + cg.n = cg1.n + cg2.n + cg3.n + cg4.n + + #in.classes + + in.ca.cg = (ca.n > 0 & cg.n > 0) + + in.ca.cg.cm = (ca.n > 0 & cg.n > 0 & cm.n > 0) + + in.ca.cg.ce = (ca.n > 0 & cg.n > 0 & ce.n > 0) + + in.ca.cg.cm.ce = (ca.n > 0 & cg.n > 0 & cm.n > 0 & ce.n > 0) + + in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0) + + in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0) + in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0) + in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0) + in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0) + in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0) + in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0) + + in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0) + in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0) + in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0) + in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0) + + in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0) + + #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html) + rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, ce.html, un.html) + rw = c(rw, ca.n, cg.n, cm.n, ce.n, in.classes, in.ca.cg, in.ca.cg.cm, in.ca.cg.ce, in.ca.cg.cm.ce, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all) + + + + cat(tr(rw), file=main.html, append=T) + + + for(i in 1:nrow(allc)){ #generate html by id + html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"]) + cat(paste(html, "<br />"), file=sequence.id.page, append=T) + } +} + +cat("</table>", file=main.html, append=T) + +print(paste("Single sequences:", single.sequences)) +print(paste("Sequences in multiple subclasses:", in.multiple)) +print(paste("Multiple sequences in one subclass:", multiple.in.one)) +print(paste("Matched with unmatched:", some.unmatched)) +print(paste("Count that should match 'matched' sequences:", matched)) + +#ACGT overview + +#NToverview = merged[!grepl("^unmatched", merged$best_match),] +NToverview = merged + +if(empty.region.filter == "leader"){ + NToverview$seq = paste(NToverview$FR1.IMGT.seq, NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) +} else if(empty.region.filter == "FR1"){ + NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) +} else if(empty.region.filter == "CDR1"){ + NToverview$seq = paste(NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) +} else if(empty.region.filter == "FR2"){ + NToverview$seq = paste(NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq) +} + +NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq)) +NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq)) +NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq)) +NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq)) + +#Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T)) + +#NToverview = rbind(NToverview, NTsum) + +NTresult = data.frame(nt=c("A", "C", "T", "G")) + +for(clazz in gene.classes){ + print(paste("class:", clazz)) + NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),] + print(paste("nrow:", nrow(NToverview.sub))) + new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G)) + new.col.y = sum(new.col.x) + new.col.z = round(new.col.x / new.col.y * 100, 2) + + tmp = names(NTresult) + NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) + names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep="")) +} + +NToverview.tmp = NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")] + +names(NToverview.tmp) = c("Sequence.ID", "best_match", "Sequence of the analysed region", "A", "C", "G", "T") + +write.table(NToverview.tmp, NToverview.file, quote=F, sep="\t", row.names=F, col.names=T) + +NToverview = NToverview[!grepl("unmatched", NToverview$best_match),] + +new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G)) +new.col.y = sum(new.col.x) +new.col.z = round(new.col.x / new.col.y * 100, 2) + +tmp = names(NTresult) +NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) +names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep="")) + +names(hotspot.analysis.sum) = names(NTresult) + +hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult) + +write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0") + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
