Mercurial > repos > rhpvorderman > shm_csr
comparison gene_identification.py @ 0:64d74ba01a7c draft
"planemo upload commit 78d1fae87dbcf490e49a9f99e7a06de7328e16d4"
| author | rhpvorderman |
|---|---|
| date | Wed, 27 Oct 2021 12:34:47 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:64d74ba01a7c |
|---|---|
| 1 import re | |
| 2 import argparse | |
| 3 import time | |
| 4 starttime= int(time.time() * 1000) | |
| 5 | |
| 6 parser = argparse.ArgumentParser() | |
| 7 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") | |
| 8 parser.add_argument("--output", help="The annotated output file to be merged back with the summary file") | |
| 9 | |
| 10 args = parser.parse_args() | |
| 11 | |
| 12 infile = args.input | |
| 13 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" | |
| 14 output = args.output | |
| 15 #outfile = "identified.txt" | |
| 16 | |
| 17 dic = dict() | |
| 18 total = 0 | |
| 19 | |
| 20 | |
| 21 first = True | |
| 22 IDIndex = 0 | |
| 23 seqIndex = 0 | |
| 24 | |
| 25 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
| 26 for line in f: | |
| 27 total += 1 | |
| 28 linesplt = line.split("\t") | |
| 29 if first: | |
| 30 print("linesplt", linesplt) | |
| 31 IDIndex = linesplt.index("Sequence ID") | |
| 32 seqIndex = linesplt.index("Sequence") | |
| 33 first = False | |
| 34 continue | |
| 35 | |
| 36 ID = linesplt[IDIndex] | |
| 37 if len(linesplt) < 28: #weird rows without a sequence | |
| 38 dic[ID] = "" | |
| 39 else: | |
| 40 dic[ID] = linesplt[seqIndex] | |
| 41 | |
| 42 print("Number of input sequences:", len(dic)) | |
| 43 | |
| 44 #old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc | |
| 45 #old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag | |
| 46 | |
| 47 #lambda/kappa reference sequence | |
| 48 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg", | |
| 49 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc", | |
| 50 "ce": "gcctccacacagagcccatccgtcttccccttgacccgctgctgcaaaaacattccctcc", | |
| 51 "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence | |
| 52 | |
| 53 compiledregex = {"ca": [], | |
| 54 "cg": [], | |
| 55 "ce": [], | |
| 56 "cm": []} | |
| 57 | |
| 58 #lambda/kappa reference sequence variable nucleotides | |
| 59 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} | |
| 60 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} | |
| 61 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
| 62 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} | |
| 63 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
| 64 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} | |
| 65 | |
| 66 #remove last snp for shorter cg sequence --- note, also change varsInCG | |
| 67 del cg1[132] | |
| 68 del cg2[132] | |
| 69 del cg3[132] | |
| 70 del cg4[132] | |
| 71 | |
| 72 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap | |
| 73 chunklength = 8 | |
| 74 | |
| 75 #create the chunks of the reference sequence with regular expressions for the variable nucleotides | |
| 76 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength // 2): | |
| 77 pos = i | |
| 78 chunk = searchstrings["ca"][i:i+chunklength] | |
| 79 result = "" | |
| 80 varsInResult = 0 | |
| 81 for c in chunk: | |
| 82 if pos in list(ca1.keys()): | |
| 83 varsInResult += 1 | |
| 84 result += "[" + ca1[pos] + ca2[pos] + "]" | |
| 85 else: | |
| 86 result += c | |
| 87 pos += 1 | |
| 88 compiledregex["ca"].append((re.compile(result), varsInResult)) | |
| 89 | |
| 90 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength // 2): | |
| 91 pos = i | |
| 92 chunk = searchstrings["cg"][i:i+chunklength] | |
| 93 result = "" | |
| 94 varsInResult = 0 | |
| 95 for c in chunk: | |
| 96 if pos in list(cg1.keys()): | |
| 97 varsInResult += 1 | |
| 98 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" | |
| 99 else: | |
| 100 result += c | |
| 101 pos += 1 | |
| 102 compiledregex["cg"].append((re.compile(result), varsInResult)) | |
| 103 | |
| 104 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength // 2): | |
| 105 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) | |
| 106 | |
| 107 for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength // 2): | |
| 108 compiledregex["ce"].append((re.compile(searchstrings["ce"][i:i+chunklength]), False)) | |
| 109 | |
| 110 def removeAndReturnMaxIndex(x): #simplifies a list comprehension | |
| 111 m = max(x) | |
| 112 index = x.index(m) | |
| 113 x[index] = 0 | |
| 114 return index | |
| 115 | |
| 116 | |
| 117 start_location = dict() | |
| 118 hits = dict() | |
| 119 alltotal = 0 | |
| 120 for key in compiledregex: #for ca/cg/cm/ce | |
| 121 regularexpressions = compiledregex[key] # get the compiled regular expressions | |
| 122 for ID in list(dic.keys())[0:]: #for every ID | |
| 123 if ID not in list(hits.keys()): #ensure that the dictionairy that keeps track of the hits for every gene exists | |
| 124 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} | |
| 125 currentIDHits = hits[ID] | |
| 126 seq = dic[ID] | |
| 127 lastindex = 0 | |
| 128 start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0) | |
| 129 start = [0] * (len(seq) + start_zero) | |
| 130 for i, regexp in enumerate(regularexpressions): #for every regular expression | |
| 131 relativeStartLocation = lastindex - (chunklength // 2) * i | |
| 132 if relativeStartLocation >= len(seq): | |
| 133 break | |
| 134 regex, hasVar = regexp | |
| 135 matches = regex.finditer(seq[lastindex:]) | |
| 136 for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop | |
| 137 lastindex += match.start() | |
| 138 start[relativeStartLocation + start_zero] += 1 | |
| 139 if hasVar: #if the regex has a variable nt in it | |
| 140 chunkstart = chunklength // 2 * i #where in the reference does this chunk start | |
| 141 chunkend = chunklength // 2 * i + chunklength #where in the reference does this chunk end | |
| 142 if key == "ca": #just calculate the variable nt score for 'ca', cheaper | |
| 143 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) | |
| 144 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) | |
| 145 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper | |
| 146 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) | |
| 147 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) | |
| 148 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) | |
| 149 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) | |
| 150 else: #key == "cm" #no variable regions in 'cm' or 'ce' | |
| 151 pass | |
| 152 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped | |
| 153 else: #only runs if there were no hits | |
| 154 continue | |
| 155 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] | |
| 156 currentIDHits[key + "_hits"] += 1 | |
| 157 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1]) | |
| 158 #start_location[ID + "_" + key] = str(start.index(max(start))) | |
| 159 | |
| 160 | |
| 161 varsInCA = float(len(list(ca1.keys())) * 2) | |
| 162 varsInCG = float(len(list(cg1.keys())) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice | |
| 163 varsInCM = 0 | |
| 164 varsInCE = 0 | |
| 165 | |
| 166 def round_int(val): | |
| 167 return int(round(val)) | |
| 168 | |
| 169 first = True | |
| 170 seq_write_count=0 | |
| 171 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
| 172 with open(output, 'w') as o: | |
| 173 for line in f: | |
| 174 total += 1 | |
| 175 if first: | |
| 176 o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
| 177 first = False | |
| 178 continue | |
| 179 linesplt = line.split("\t") | |
| 180 if linesplt[2] == "No results": | |
| 181 pass | |
| 182 ID = linesplt[1] | |
| 183 currentIDHits = hits[ID] | |
| 184 possibleca = float(len(compiledregex["ca"])) | |
| 185 possiblecg = float(len(compiledregex["cg"])) | |
| 186 possiblecm = float(len(compiledregex["cm"])) | |
| 187 possiblece = float(len(compiledregex["ce"])) | |
| 188 cahits = currentIDHits["ca_hits"] | |
| 189 cghits = currentIDHits["cg_hits"] | |
| 190 cmhits = currentIDHits["cm_hits"] | |
| 191 cehits = currentIDHits["ce_hits"] | |
| 192 if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene | |
| 193 ca1hits = currentIDHits["ca1"] | |
| 194 ca2hits = currentIDHits["ca2"] | |
| 195 if ca1hits >= ca2hits: | |
| 196 o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
| 197 else: | |
| 198 o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
| 199 elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene | |
| 200 cg1hits = currentIDHits["cg1"] | |
| 201 cg2hits = currentIDHits["cg2"] | |
| 202 cg3hits = currentIDHits["cg3"] | |
| 203 cg4hits = currentIDHits["cg4"] | |
| 204 if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene | |
| 205 o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 206 elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene | |
| 207 o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 208 elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene | |
| 209 o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 210 else: #cg4 gene | |
| 211 o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 212 else: #its a cm or ce gene | |
| 213 if cmhits >= cehits: | |
| 214 o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n") | |
| 215 else: | |
| 216 o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n") | |
| 217 seq_write_count += 1 | |
| 218 | |
| 219 print("Time: %i" % (int(time.time() * 1000) - starttime)) | |
| 220 | |
| 221 print("Number of sequences written to file:", seq_write_count) | |
| 222 | |
| 223 | |
| 224 | |
| 225 | |
| 226 |
