# HG changeset patch # User recetox # Date 1618821102 0 # Node ID a7c9fc186f8c3d0873c0beb5d7c4466e023616ec # Parent 4aecfd6b319baeb3ee1b5c4fd65d0799b5c18a37 "planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/matchms commit 557e6558b93e63fd0b70443164d2d624cc05c319" diff -r 4aecfd6b319b -r a7c9fc186f8c matchms.xml --- a/matchms.xml Wed Mar 17 11:40:17 2021 +0000 +++ b/matchms.xml Mon Apr 19 08:31:42 2021 +0000 @@ -1,4 +1,4 @@ - + matchms pandas @@ -9,8 +9,8 @@ + python3 ${__tool_directory__}/matchms_wrapper.py "$references" "$queries" "$similarity_metric" "$similarity_scores" "$similarity_matches" "$algorithm.tolerance" "$algorithm.mz_power" "$algorithm.intensity_power" + ]]> @@ -18,8 +18,13 @@ - + +
+ + + +
@@ -64,8 +69,6 @@ | RAMClustR | Mass spectra | msp | queries | +-----------+---------------+--------+-----------+ - RAMClustR outputs a collection of **msp** files which can be matched to a library (.msp) using a similarity score computed in matchMS. - Downstream Tools The **output** is a csv which contains the similarity score and second csv containing the number of matched peaks. ]]> diff -r 4aecfd6b319b -r a7c9fc186f8c matchms_wrapper.py --- a/matchms_wrapper.py Wed Mar 17 11:40:17 2021 +0000 +++ b/matchms_wrapper.py Mon Apr 19 08:31:42 2021 +0000 @@ -2,14 +2,12 @@ import sys from matchms import calculate_scores +from matchms.filtering import add_precursor_mz from matchms.importing import load_from_msp from matchms.similarity import ( CosineGreedy, CosineHungarian, - FingerprintSimilarity, - IntersectMz, ModifiedCosine, - ParentMassMatch ) from pandas import DataFrame @@ -23,30 +21,29 @@ parser.add_argument("similarity_metric", type=str, help='Metric to use for matching.') parser.add_argument("output_filename_scores", type=str, help="Path where to store the output .csv scores.") parser.add_argument("output_filename_matches", type=str, help="Path where to store the output .csv matches.") + parser.add_argument("tolerance", type=float, help="Tolerance to use for peak matching.") + parser.add_argument("mz_power", type=float, help="The power to raise mz to in the cosine function.") + parser.add_argument("intensity_power", type=float, help="The power to raise intensity to in the cosine function.") args = parser.parse_args() + reference_spectra = load_from_msp(args.references_filename) + queries_spectra = load_from_msp(args.queries_filename) + if args.similarity_metric == 'CosineGreedy': - similarity_metric = CosineGreedy() + similarity_metric = CosineGreedy(args.tolerance, args.mz_power, args.intensity_power) elif args.similarity_metric == 'CosineHungarian': - similarity_metric = CosineHungarian() - elif args.similarity_metric == 'FingerprintSimilarity': - similarity_metric = FingerprintSimilarity() - elif args.similarity_metric == 'IntersectMz': - similarity_metric = IntersectMz() + similarity_metric = CosineHungarian(args.tolerance, args.mz_power, args.intensity_power) elif args.similarity_metric == 'ModifiedCosine': - similarity_metric = ModifiedCosine() + similarity_metric = ModifiedCosine(args.tolerance, args.mz_power, args.intensity_power) + reference_spectra = map(add_precursor_mz, reference_spectra) + queries_spectra = map(add_precursor_mz, queries_spectra) else: - similarity_metric = ParentMassMatch() - - reference_spectra = [ - spectrum for spectrum in load_from_msp(args.references_filename) - ] - queries_spectra = [spectrum for spectrum in load_from_msp(args.queries_filename)] + return -1 scores = calculate_scores( - references=reference_spectra, - queries=queries_spectra, + references=list(reference_spectra), + queries=list(queries_spectra), similarity_function=similarity_metric, )