| 0 | 1 #!/usr/bin/env python | 
|  | 2 # encoding: utf-8 | 
|  | 3 ''' | 
|  | 4 Module to combine output from the GCMS Galaxy tools RankFilter, CasLookup and MsClust | 
|  | 5 into a tabular file that can be uploaded to the MetExp database. | 
|  | 6 | 
|  | 7 RankFilter, CasLookup are already combined by combine_output.py so here we will use | 
|  | 8 this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust | 
|  | 9 quantification files are to be combined with combine_output.py result as well. | 
|  | 10 | 
|  | 11 Extra calculations performed: | 
|  | 12 - The column MW is also added here and is derived from the column FORMULA found | 
|  | 13   in combine_output.py result. | 
|  | 14 | 
|  | 15 So in total here we merge 3 files and calculate one new column. | 
|  | 16 ''' | 
|  | 17 | 
|  | 18 import csv | 
|  | 19 import sys | 
|  | 20 from collections import OrderedDict | 
|  | 21 | 
|  | 22 __author__ = "Pieter Lukasse" | 
|  | 23 __contact__ = "pieter.lukasse@wur.nl" | 
|  | 24 __copyright__ = "Copyright, 2013, Plant Research International, WUR" | 
|  | 25 __license__ = "Apache v2" | 
|  | 26 | 
|  | 27 def _process_data(in_csv, delim='\t'): | 
|  | 28     ''' | 
|  | 29     Generic method to parse a tab-separated file returning a dictionary with named columns | 
|  | 30     @param in_csv: input filename to be parsed | 
|  | 31     ''' | 
|  | 32     data = list(csv.reader(open(in_csv, 'rU'), delimiter=delim)) | 
|  | 33     header = data.pop(0) | 
|  | 34     # Create dictionary with column name as key | 
|  | 35     output = OrderedDict() | 
|  | 36     for index in xrange(len(header)): | 
|  | 37         output[header[index]] = [row[index] for row in data] | 
|  | 38     return output | 
|  | 39 | 
|  | 40 ONE_TO_ONE = 'one_to_one' | 
|  | 41 N_TO_ONE = 'n_to_one' | 
|  | 42 | 
|  | 43 def _merge_data(set1, link_field_set1, set2, link_field_set2, compare_function, merge_function, relation_type=ONE_TO_ONE): | 
|  | 44     ''' | 
|  | 45     Merges data from both input dictionaries based on the link fields. This method will | 
|  | 46     build up a new list containing the merged hits as the items. | 
|  | 47     @param set1: dictionary holding set1 in the form of N lists (one list per attribute name) | 
|  | 48     @param set2: dictionary holding set2 in the form of N lists (one list per attribute name) | 
|  | 49     ''' | 
|  | 50     # TODO test for correct input files -> same link_field values should be there (test at least number of unique link_field values): | 
|  | 51     # | 
|  | 52     # if (len(set1[link_field_set1]) != len(set2[link_field_set2])): | 
|  | 53     #    raise Exception('input files should have the same nr of key values  ') | 
|  | 54 | 
|  | 55 | 
|  | 56     merged = [] | 
|  | 57     processed = {} | 
|  | 58     for link_field_set1_idx in xrange(len(set1[link_field_set1])): | 
|  | 59         link_field_set1_value = set1[link_field_set1][link_field_set1_idx] | 
|  | 60         if not link_field_set1_value in processed : | 
|  | 61             # keep track of processed items to not repeat them | 
|  | 62             processed[link_field_set1_value] = link_field_set1_value | 
|  | 63 | 
|  | 64             # Get the indices for current link_field_set1_value in both data-structures for proper matching | 
|  | 65             set1index = [index for index, value in enumerate(set1[link_field_set1]) if value == link_field_set1_value] | 
|  | 66             set2index = [index for index, value in enumerate(set2[link_field_set2]) if compare_function(value, link_field_set1_value)==True ] | 
|  | 67 | 
|  | 68 | 
|  | 69 | 
|  | 70             merged_hits = [] | 
|  | 71             # Combine hits | 
|  | 72             for hit in xrange(len(set1index)): | 
|  | 73                 # Create records of hits to be merged ("keys" are the attribute names, so what the lines below do | 
|  | 74                 # is create a new "dict" item with same "keys"/attributes, with each attribute filled with its | 
|  | 75                 # corresponding value in the rankfilter or caslookup tables; i.e. | 
|  | 76                 # rankfilter[key] => returns the list/array with size = nrrows, with the values for the attribute | 
|  | 77                 #                    represented by "key". rindex[hit] => points to the row nr=hit (hit is a rownr/index) | 
|  | 78                 # It just ensures the entry is made available as a plain named array for easy access. | 
|  | 79                 rf_record = OrderedDict(zip(set1.keys(), [set1[key][set1index[hit]] for key in set1.keys()])) | 
|  | 80                 if relation_type == ONE_TO_ONE : | 
|  | 81                     cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[hit]] for key in set2.keys()])) | 
|  | 82                 else: | 
|  | 83                     # is N to 1: | 
|  | 84                     cl_record = OrderedDict(zip(set2.keys(), [set2[key][set2index[0]] for key in set2.keys()])) | 
|  | 85 | 
|  | 86                 merged_hit = merge_function(rf_record, cl_record) | 
|  | 87                 merged_hits.append(merged_hit) | 
|  | 88 | 
|  | 89             merged.append(merged_hits) | 
|  | 90 | 
|  | 91     return merged, len(set1index) | 
|  | 92 | 
|  | 93 | 
|  | 94 def _compare_records(key1, key2): | 
|  | 95     ''' | 
|  | 96     in this case the compare method is really simple as both keys are expected to contain | 
|  | 97     same value when records are the same | 
|  | 98     ''' | 
|  | 99     if key1 == key2: | 
|  | 100         return True | 
|  | 101     else: | 
|  | 102         return False | 
|  | 103 | 
|  | 104 | 
|  | 105 | 
|  | 106 def _merge_records(rank_caslookup_combi, msclust_quant_record): | 
|  | 107     ''' | 
|  | 108     Combines single records from both the RankFilter+CasLookup combi file and from MsClust file | 
|  | 109 | 
|  | 110     @param rank_caslookup_combi: rankfilter and caslookup combined record (see combine_output.py) | 
|  | 111     @param msclust_quant_record: msclust quantification + spectrum record | 
|  | 112     ''' | 
|  | 113     i = 0 | 
|  | 114     record = [] | 
|  | 115     for column in rank_caslookup_combi: | 
|  | 116         record.append(rank_caslookup_combi[column]) | 
|  | 117         i += 1 | 
|  | 118 | 
|  | 119     for column in msclust_quant_record: | 
|  | 120         record.append(msclust_quant_record[column]) | 
|  | 121         i += 1 | 
|  | 122 | 
|  | 123     return record | 
|  | 124 | 
|  | 125 | 
|  | 126 | 
|  | 127 | 
|  | 128 def _save_data(data, headers, nhits, out_csv): | 
|  | 129     ''' | 
|  | 130     Writes tab-separated data to file | 
|  | 131     @param data: dictionary containing merged dataset | 
|  | 132     @param out_csv: output csv file | 
|  | 133     ''' | 
|  | 134 | 
|  | 135     # Open output file for writing | 
|  | 136     outfile_single_handle = open(out_csv, 'wb') | 
|  | 137     output_single_handle = csv.writer(outfile_single_handle, delimiter="\t") | 
|  | 138 | 
|  | 139     # Write headers | 
|  | 140     output_single_handle.writerow(headers) | 
|  | 141 | 
|  | 142     # Write one line for each centrotype | 
|  | 143     for centrotype_idx in xrange(len(data)): | 
|  | 144         for hit in data[centrotype_idx]: | 
|  | 145             output_single_handle.writerow(hit) | 
|  | 146 | 
|  | 147 | 
|  | 148 def main(): | 
|  | 149     ''' | 
|  | 150     Combine Output main function | 
|  | 151 | 
|  | 152     RankFilter, CasLookup are already combined by combine_output.py so here we will use | 
|  | 153     this result. Furthermore here the MsClust spectra file (.MSP) and one of the MsClust | 
|  | 154     quantification files are to be combined with combine_output.py result as well. | 
|  | 155     ''' | 
|  | 156     rankfilter_and_caslookup_combined_file = sys.argv[1] | 
|  | 157     msclust_quantification_and_spectra_file = sys.argv[2] | 
|  | 158     output_csv = sys.argv[3] | 
|  | 159 | 
|  | 160     # Read RankFilter and CasLookup output files | 
|  | 161     rankfilter_and_caslookup_combined = _process_data(rankfilter_and_caslookup_combined_file) | 
|  | 162     msclust_quantification_and_spectra = _process_data(msclust_quantification_and_spectra_file, ',') | 
|  | 163 | 
|  | 164     merged, nhits = _merge_data(rankfilter_and_caslookup_combined, 'Centrotype', | 
|  | 165                                 msclust_quantification_and_spectra, 'centrotype', _compare_records, _merge_records, N_TO_ONE) | 
|  | 166     headers = rankfilter_and_caslookup_combined.keys() + msclust_quantification_and_spectra.keys() | 
|  | 167     _save_data(merged, headers, nhits, output_csv) | 
|  | 168 | 
|  | 169 | 
|  | 170 if __name__ == '__main__': | 
|  | 171     main() |