# HG changeset patch # User peterjc # Date 1486052093 18000 # Node ID 2f2c62ec2d088098079494310490e8040bd207a8 # Parent c4ec51cb5acc3318495f75430e703a4db750a23d v0.0.10 explicit galaxy_sequence_utils dependency etc diff -r c4ec51cb5acc -r 2f2c62ec2d08 tools/venn_list/README.rst --- a/tools/venn_list/README.rst Sat Oct 10 08:51:00 2015 -0400 +++ b/tools/venn_list/README.rst Thu Feb 02 11:14:53 2017 -0500 @@ -1,7 +1,7 @@ Galaxy tool to draw a Venn Diagram with up to 3 sets ==================================================== -This tool is copyright 2011-2015 by Peter Cock, The James Hutton Institute +This tool is copyright 2011-2017 by Peter Cock, The James Hutton Institute (formerly SCRI, Scottish Crop Research Institute), UK. All rights reserved. See the licence text below. @@ -72,6 +72,9 @@ - Includes testing of failure mode. - Planemo for Tool Shed upload (``.shed.yml``, internal change only). - Tool Shed dependency for rpy and limma (thanks to Björn Grüning). +v0.0.10 - Updated to point at Biopython 1.67 (latest version in Tool Shed). + - Explicit dependency on ``galaxy_sequence_utils``. + - Python style updates (internal change only). ======= ====================================================================== diff -r c4ec51cb5acc -r 2f2c62ec2d08 tools/venn_list/tool_dependencies.xml --- a/tools/venn_list/tool_dependencies.xml Sat Oct 10 08:51:00 2015 -0400 +++ b/tools/venn_list/tool_dependencies.xml Thu Feb 02 11:14:53 2017 -0500 @@ -1,12 +1,15 @@ + + + - + - - + + diff -r c4ec51cb5acc -r 2f2c62ec2d08 tools/venn_list/venn_list.py --- a/tools/venn_list/venn_list.py Sat Oct 10 08:51:00 2015 -0400 +++ b/tools/venn_list/venn_list.py Thu Feb 02 11:14:53 2017 -0500 @@ -11,127 +11,124 @@ import sys -def sys_exit(msg, error_level=1): - """Print error message to stdout and quit with given error level.""" - sys.stderr.write("%s\n" % msg) - sys.exit(error_level) - try: import rpy except ImportError: - sys_exit("Requires the Python library rpy (to call R)") + sys.exit("Requires the Python library rpy (to call R)") except RuntimeError, e: - sys_exit("The Python library rpy is not availble for the current R version\n\n%s" % e) + sys.exit("The Python library rpy is not availble for the current R version\n\n%s" % e) try: rpy.r.library("limma") -except: - sys_exit("Requires the R library limma (for vennDiagram function)") +except Exception: + sys.exit("Requires the R library limma (for vennDiagram function)") -if len(sys.argv)-1 not in [7, 10, 13]: - sys_exit("Expected 7, 10 or 13 arguments (for 1, 2 or 3 sets), not %i" % (len(sys.argv)-1)) +if len(sys.argv) - 1 not in [7, 10, 13]: + sys.exit("Expected 7, 10 or 13 arguments (for 1, 2 or 3 sets), not %i" % (len(sys.argv) - 1)) all_file, all_type, all_label = sys.argv[1:4] set_data = [] -if len(sys.argv)-1 >= 7: +if len(sys.argv) - 1 >= 7: set_data.append(tuple(sys.argv[4:7])) -if len(sys.argv)-1 >= 10: +if len(sys.argv) - 1 >= 10: set_data.append(tuple(sys.argv[7:10])) -if len(sys.argv)-1 >= 13: +if len(sys.argv) - 1 >= 13: set_data.append(tuple(sys.argv[10:13])) pdf_file = sys.argv[-1] n = len(set_data) print "Doing %i-way Venn Diagram" % n + def load_ids(filename, filetype): - if filetype=="tabular": + if filetype == "tabular": for line in open(filename): line = line.rstrip("\n") if line and not line.startswith("#"): - yield line.split("\t",1)[0] - elif filetype=="fasta": + yield line.split("\t", 1)[0] + elif filetype == "fasta": for line in open(filename): if line.startswith(">"): - yield line[1:].rstrip("\n").split(None,1)[0] + yield line[1:].rstrip("\n").split(None, 1)[0] elif filetype.startswith("fastq"): - #Use the Galaxy library not Biopython to cope with CS + # Use the Galaxy library not Biopython to cope with CS from galaxy_utils.sequence.fastq import fastqReader handle = open(filename, "rU") for record in fastqReader(handle): - #The [1:] is because the fastaReader leaves the @ on the identifer. + # The [1:] is because the fastaReader leaves the @ on the identifer. yield record.identifier.split()[0][1:] handle.close() - elif filetype=="sff": + elif filetype == "sff": try: from Bio.SeqIO import index except ImportError: - sys_exit("Require Biopython 1.54 or later (to read SFF files)") - #This will read the SFF index block if present (very fast) + sys.exit("Require Biopython 1.54 or later (to read SFF files)") + # This will read the SFF index block if present (very fast) for name in index(filename, "sff"): yield name else: - sys_exit("Unexpected file type %s" % filetype) + sys.exit("Unexpected file type %s" % filetype) + def load_ids_whitelist(filename, filetype, whitelist): for name in load_ids(filename, filetype): if name in whitelist: yield name else: - sys_exit("Unexpected ID %s in %s file %s" % (name, filetype, filename)) + sys.exit("Unexpected ID %s in %s file %s" % (name, filetype, filename)) if all_file in ["", "-", '""', '"-"']: - #Load without white list - sets = [set(load_ids(f,t)) for (f,t,c) in set_data] - #Take union - all = set() + # Load without white list + sets = [set(load_ids(f, t)) for (f, t, c) in set_data] + # Take union + all_ids = set() for s in sets: - all.update(s) - print "Inferred total of %i IDs" % len(all) + all_ids.update(s) + print "Inferred total of %i IDs" % len(all_ids) else: - all = set(load_ids(all_file, all_type)) - print "Total of %i IDs" % len(all) - sets = [set(load_ids_whitelist(f,t,all)) for (f,t,c) in set_data] + all_ids = set(load_ids(all_file, all_type)) + print "Total of %i IDs" % len(all_ids) + sets = [set(load_ids_whitelist(f, t, all_ids)) for (f, t, c) in set_data] -for s, (f,t,c) in zip(sets, set_data): +for s, (f, t, c) in zip(sets, set_data): print "%i in %s" % (len(s), c) -#Now call R library to draw simple Venn diagram +# Now call R library to draw simple Venn diagram try: - #Create dummy Venn diagram counts object for three groups - cols = 'c("%s")' % '","'.join("Set%i" % (i+1) for i in range(n)) - rpy.r('groups <- cbind(%s)' % ','.join(['1']*n)) + # Create dummy Venn diagram counts object for three groups + cols = 'c("%s")' % '","'.join("Set%i" % (i + 1) for i in range(n)) + rpy.r('groups <- cbind(%s)' % ','.join(['1'] * n)) rpy.r('colnames(groups) <- %s' % cols) rpy.r('vc <- vennCounts(groups)') - #Populate the 2^n classes with real counts - #Don't make any assumptions about the class order - #print rpy.r('vc') + # Populate the 2^n classes with real counts + # Don't make any assumptions about the class order + # print rpy.r('vc') for index, row in enumerate(rpy.r('vc[,%s]' % cols)): if isinstance(row, int) or isinstance(row, float): - #Hack for rpy being too clever for single element row + # Hack for rpy being too clever for single element row row = [row] - names = all + names = all_ids for wanted, s in zip(row, sets): if wanted: names = names.intersection(s) else: names = names.difference(s) - rpy.r('vc[%i,"Counts"] <- %i' % (index+1, len(names))) - #print rpy.r('vc') + rpy.r('vc[%i,"Counts"] <- %i' % (index + 1, len(names))) + # print rpy.r('vc') if n == 1: - #Single circle, don't need to add (Total XXX) line - names = [c for (t,f,c) in set_data] + # Single circle, don't need to add (Total XXX) line + names = [c for (t, f, c) in set_data] else: - names = ["%s\n(Total %i)" % (c, len(s)) for s, (f,t,c) in zip(sets, set_data)] + names = ["%s\n(Total %i)" % (c, len(s)) for s, (f, t, c) in zip(sets, set_data)] rpy.r.assign("names", names) - rpy.r.assign("colors", ["red","green","blue"][:n]) + rpy.r.assign("colors", ["red", "green", "blue"][:n]) rpy.r.pdf(pdf_file, 8, 8) rpy.r("""vennDiagram(vc, include="both", names=names, main="%s", sub="(Total %i)", circle.col=colors) - """ % (all_label, len(all))) + """ % (all_label, len(all_ids))) rpy.r.dev_off() except Exception, exc: - sys_exit( "%s" %str( exc ) ) -rpy.r.quit( save="no" ) + sys.exit("%s" % str(exc)) +rpy.r.quit(save="no") print "Done" diff -r c4ec51cb5acc -r 2f2c62ec2d08 tools/venn_list/venn_list.xml --- a/tools/venn_list/venn_list.xml Sat Oct 10 08:51:00 2015 -0400 +++ b/tools/venn_list/venn_list.xml Thu Feb 02 11:14:53 2017 -0500 @@ -1,157 +1,158 @@ - - from lists - - rpy - Bio - rpy - limma - biopython - - - - - - - -venn_list.py -#if $universe.type_select=="implicit": - - - -#else: - "$main" $main.ext -#end if -"$main_lab" -#for $s in $sets: - "$s.set" $s.set.ext "$s.lab" -#end for -$PDF - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. class:: infomark - -**TIP:** If your data is in tabular files, the identifier is assumed to be in column one. - -**What it does** - -Draws Venn Diagram for one, two or three sets (as a PDF file). - -You must supply one, two or three sets of identifiers -- corresponding -to one, two or three circles on the Venn Diagram. - -In general you should also give the full list of all the identifiers -explicitly. This is used to calculate the number of identifers outside -the circles (and check the identifiers in the other files match up). -The full list can be omitted by implicitly taking the union of the -category sets. In this case, the count outside the categories (circles) -will always be zero. - -The identifiers can be taken from the first column of a tabular file -(e.g. query names in BLAST tabular output, or signal peptide predictions -after filtering, etc), or from a sequence file (FASTA, FASTQ, SFF). - -For example, you may have a set of NGS reads (as a FASTA, FASTQ or SFF -file), and the results of several different read mappings (e.g. to -different references) as tabular files (filtered to have just the mapped -reads). You could then show the different mappings (and their overlaps) -as a Venn Diagram, and the outside count would be the unmapped reads. - -**Citations** - -The Venn Diagrams are drawn using Gordon Smyth's limma package from -R/Bioconductor, http://www.bioconductor.org/ - -The R library is called from Python via rpy, http://rpy.sourceforge.net/ - -If you use this Galaxy tool in work leading to a scientific publication please -cite: - -Peter J.A. Cock, Björn A. Grüning, Konrad Paszkiewicz and Leighton Pritchard (2013). -Galaxy tools and workflows for sequence analysis with applications -in molecular plant pathology. PeerJ 1:e167 -http://dx.doi.org/10.7717/peerj.167 - -This tool uses Biopython to read and write SFF files, so you may also wish to -cite the Biopython application note (and Galaxy too of course): - -Cock et al 2009. Biopython: freely available Python tools for computational -molecular biology and bioinformatics. Bioinformatics 25(11) 1422-3. -http://dx.doi.org/10.1093/bioinformatics/btp163 pmid:19304878. - - - - 10.7717/peerj.167 - 10.1093/bioinformatics/15.5.356 - - + + from lists + + galaxy_sequence_utils + rpy + Bio + rpy + limma + biopython + + + + + + + +venn_list.py +#if $universe.type_select=="implicit": + - - +#else: + "$main" $main.ext +#end if +"$main_lab" +#for $s in $sets: + "$s.set" $s.set.ext "$s.lab" +#end for +$PDF + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +.. class:: infomark + +**TIP:** If your data is in tabular files, the identifier is assumed to be in column one. + +**What it does** + +Draws Venn Diagram for one, two or three sets (as a PDF file). + +You must supply one, two or three sets of identifiers -- corresponding +to one, two or three circles on the Venn Diagram. + +In general you should also give the full list of all the identifiers +explicitly. This is used to calculate the number of identifers outside +the circles (and check the identifiers in the other files match up). +The full list can be omitted by implicitly taking the union of the +category sets. In this case, the count outside the categories (circles) +will always be zero. + +The identifiers can be taken from the first column of a tabular file +(e.g. query names in BLAST tabular output, or signal peptide predictions +after filtering, etc), or from a sequence file (FASTA, FASTQ, SFF). + +For example, you may have a set of NGS reads (as a FASTA, FASTQ or SFF +file), and the results of several different read mappings (e.g. to +different references) as tabular files (filtered to have just the mapped +reads). You could then show the different mappings (and their overlaps) +as a Venn Diagram, and the outside count would be the unmapped reads. + +**Citations** + +The Venn Diagrams are drawn using Gordon Smyth's limma package from +R/Bioconductor, http://www.bioconductor.org/ + +The R library is called from Python via rpy, http://rpy.sourceforge.net/ + +If you use this Galaxy tool in work leading to a scientific publication please +cite: + +Peter J.A. Cock, Björn A. Grüning, Konrad Paszkiewicz and Leighton Pritchard (2013). +Galaxy tools and workflows for sequence analysis with applications +in molecular plant pathology. PeerJ 1:e167 +http://dx.doi.org/10.7717/peerj.167 + +This tool uses Biopython to read and write SFF files, so you may also wish to +cite the Biopython application note (and Galaxy too of course): + +Cock et al 2009. Biopython: freely available Python tools for computational +molecular biology and bioinformatics. Bioinformatics 25(11) 1422-3. +http://dx.doi.org/10.1093/bioinformatics/btp163 pmid:19304878. + + + + 10.7717/peerj.167 + 10.1093/bioinformatics/15.5.356 + +