Mercurial > repos > peterjc > mira4_assembler
view tools/mira4/mira4_de_novo.xml @ 5:ffefb87bd414 draft
Uploaded v0.0.1 preview 5, using MIRA 4.0 RC4, supports segment_placement (pairing type)
author | peterjc |
---|---|
date | Tue, 15 Oct 2013 12:07:34 -0400 |
parents | df86ed992a1b |
children | 626d5cfd01aa |
line wrap: on
line source
<tool id="mira_4_0_de_novo" name="MIRA v4.0 de novo assember" version="0.0.1"> <description>Takes Sanger, Roche 454, Solexa/Illumina, Ion Torrent and PacBio reads</description> <requirements> <requirement type="python-module">Bio</requirement> <requirement type="binary">mira</requirement> <requirement type="package" version="4.0">MIRA</requirement> </requirements> <version_command interpreter="python">mira4.py --version</version_command> <command interpreter="python"> mira4.py $manifest $out_maf $out_fasta $out_log </command> <inputs> <param name="job_type" type="select" label="Assembly type"> <option value="genome">Genome</option> <option value="est">EST (transcriptome)</option> </param> <param name="job_quality" type="select" label="Assembly quality grade"> <option value="accurate">Accurate</option> <option value="draft">Draft</option> </param> <repeat name="read_group" title="Read Group" min="1"> <param name="technology" type="select" label="Read technology"> <option value="solexa">Solexa/Illumina</option> <option value="sanger">Sanger cappillary sequencing</option> <option value="454">Roche 454</option> <option value="iontor">Ion Torrent</option> <option value="pcbiolq">PacBio low quality (raw)</option> <option value="pcbiohq">PacBio high quality (corrected)</option> <option value="text">Synthetic reads (database entries, consensus sequences, artifical reads, etc)</option> <!-- TODO reference/backbone as an entry here? --> </param> <param name="segment_placement" type="select" label="Pairing type (segment placing)"> <option value="">None (e.g. single end sequencing)</option> <option value="FR">---> <--- (e.g. Sanger capillary or Solexa/Illumina paired-end library)</option> <option value="RF"><--- ---> (e.g. Solexa/Illumina mate-pair library)</option> <option value="SB">2---> 1---> (e.g. Roche 454 paired-end libraries or IonTorrent long-mate; see note)</option> <option value="?">Unknown or not relevant (e.g. primer walking with Sanger capillary sequencing)</option> </param> <param name="filenames" type="data" format="fastq,mira" multiple="true" required="true" label="Read file(s)" help="Multiple files allowed, for example paired reads can be given as two files (MIRA looks at read names to identify pairs)." /> </repeat> </inputs> <outputs> <data name="out_fasta" format="fasta" label="MIRA de novo contigs (FASTA)" /> <data name="out_maf" format="mira" label="MIRA de novo assembly" /> <data name="out_log" format="txt" label="MIRA de novo log" /> </outputs> <configfiles> <configfile name="manifest"> project = MIRA job = denovo,${job_type},${job_quality} parameters = -GE:not=1 -NW:cmrnl -DI:trt=/tmp ## -GE:not is short for -GENERAL:number_of_threads and using one (1) ## can be useful for repeatability of assemblies and bug hunting. ## ## -NW:cmrnl is short for -NAG_AND_WARN:check_maxreadnamelength ## and without this MIRA aborts with read names over 40 characters ## due to limitations of some downstream tools. ## ## -DI:trt is short for -DIRECTORY:tmp_redirected_to and should ## point to a local hard drive (not something like NFS on network). #for $rg in $read_group ##This bar goes into the manifest as a comment line #------------------------------------------------------------------------------ readgroup technology = ${rg.technology} ##MIRA will accept multiple filenames on one data line, or multiple data lines #for $f in $rg.filenames #if str($rg.segment_placement) != "" ##Record the segment placement (if any) segmentplacement = ${rg.segment_placement} #end if ##Must now map Galaxy datatypes to MIRA file types... #if $f.ext.startswith("fastq") ##MIRA doesn't like fastqsanger etc, just plain old fastq: data = fastq::$f #elif $f.ext == "mira" ##We're calling *.maf the "mira" format in Galaxy (name space collision) data = maf::$f #else ##MIRA is happy with fasta as name, data = ${f.ext}::$f #end if #end for #end for </configfile> </configfiles> <tests> <!-- Based on the MIRA v3.4.1.1 bundled minidemo/estdemo2 which uses strain data and miraSearchESTSNPs. Here we just assemble it. --> <!-- Commenting out test until Galaxy framework is fixed, https://trello.com/c/zSTrfDOB/820-disambiguated-conditional-parameters-not-supported-in-unit-tests <test> <param name="job_method" value="denovo" /> <param name="job_type" value="est" /> <param name="job_qual" value="accurate" /> <param name="condBackbone.use" value="false" /> <param name="condSanger.use" value="true" /> <param name="condSanger.filename" value="tvc_mini.fastq" ftype="fastq" /> <param name="condRoche.use" value="false" /> <param name="condIllumina.use" value="false" /> <param name="condIonTorrent.use" value="false" /> <output name="out_fasta" file="tvc_contigs.fasta" ftype="fasta" /> </test> --> </tests> <help> **What it does** Runs MIRA v4.0 in de novo mode, collects the output, and throws away all the temporary files. MIRA is an open source assembly tool capable of handling sequence data from a range of platforms (Sanger capillary, Solexa/Illumina, Roche 454, Ion Torrent and also PacBio). It is particularly suited to small genomes such as bacteria. **Notes** .. class:: warningmark Note that the raw data for Roche 454 and Ion Torrent paired-end libraries sequences a circularised fragment such that the raw data starts with the end of the fragment, a linker, then the start of the fragment. This means both the start and end are sequenced from the same strand, and thus should be given to MIRA as orientation "2---> 1--->". However, in order to use this data with traditional tools expecting Sanger capillary style libraries which expect "---> <---" your FASTQ files may have been pre-processed to mimic this by reverse complementing one of the pair. **Citation** If you use this Galaxy tool in work leading to a scientific publication please cite the following papers: Peter J.A. Cock, Björn A. Grüning, Konrad Paszkiewicz and Leighton Pritchard (2013). Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ 1:e167 http://dx.doi.org/10.7717/peerj.167 Bastien Chevreux, Thomas Wetter and Sándor Suhai (1999). Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99, pp. 45-56. http://www.bioinfo.de/isb/gcb99/talks/chevreux/main.html This wrapper is available to install into other Galaxy Instances via the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/view/peterjc/mira4_assembler </help> </tool>